Do you want to publish a course? Click here

A Benchmark to Select Data Mining Based Classification Algorithms For Business Intelligence And Decision Support Systems

184   0   0.0 ( 0 )
 Added by Pardeep Kumar
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

DSS serve the management, operations, and planning levels of an organization and help to make decisions, which may be rapidly changing and not easily specified in advance. Data mining has a vital role to extract important information to help in decision making of a decision support system. Integration of data mining and decision support systems (DSS) can lead to the improved performance and can enable the tackling of new types of problems. Artificial Intelligence methods are improving the quality of decision support, and have become embedded in many applications ranges from ant locking automobile brakes to these days interactive search engines. It provides various machine learning techniques to support data mining. The classification is one of the main and valuable tasks of data mining. Several types of classification algorithms have been suggested, tested and compared to determine the future trends based on unseen data. There has been no single algorithm found to be superior over all others for all data sets. The objective of this paper is to compare various classification algorithms that have been frequently used in data mining for decision support systems. Three decision trees based algorithms, one artificial neural network, one statistical, one support vector machines with and without ada boost and one clustering algorithm are tested and compared on four data sets from different domains in terms of predictive accuracy, error rate, classification index, comprehensibility and training time. Experimental results demonstrate that Genetic Algorithm (GA) and support vector machines based algorithms are better in terms of predictive accuracy. SVM without adaboost shall be the first choice in context of speed and predictive accuracy. Adaboost improves the accuracy of SVM but on the cost of large training time.



rate research

Read More

150 - Hadj Mahboubi 2008
With the multiplication of XML data sources, many XML data warehouse models have been proposed to handle data heterogeneity and complexity in a way relational data warehouses fail to achieve. However, XML-native database systems currently suffer from limited performances, both in terms of manageable data volume and response time. Fragmentation helps address both these issues. Derived horizontal fragmentation is typically used in relational data warehouses and can definitely be adapted to the XML context. However, the number of fragments produced by classical algorithms is difficult to control. In this paper, we propose the use of a k-means-based fragmentation approach that allows to master the number of fragments through its $k$ parameter. We experimentally compare its efficiency to classical derived horizontal fragmentation algorithms adapted to XML data warehouses and show its superiority.
In real life, media information has time attributes either implicitly or explicitly known as temporal data. This paper investigates the usefulness of applying Bayesian classification to an interval encoded temporal database with prioritized items. The proposed method performs temporal mining by encoding the database with weighted items which prioritizes the items according to their importance from the user perspective. Naive Bayesian classification helps in making the resulting temporal rules more effective. The proposed priority based temporal mining (PBTM) method added with classification aids in solving problems in a well informed and systematic manner. The experimental results are obtained from the complaints database of the telecommunications system, which shows the feasibility of this method of classification based temporal mining.
The COVID-19 crisis has brought about new clinical questions, new workflows, and accelerated distributed healthcare needs. While artificial intelligence (AI)-based clinical decision support seemed to have matured, the application of AI-based tools for COVID-19 has been limited to date. In this perspective piece, we identify opportunities and requirements for AI-based clinical decision support systems and highlight challenges that impact AI readiness for rapidly emergent healthcare challenges.
Materialized views and indexes are physical structures for accelerating data access that are casually used in data warehouses. However, these data structures generate some maintenance overhead. They also share the same storage space. Most existing studies about materialized view and index selection consider these structures separately. In this paper, we adopt the opposite stance and couple materialized view and index selection to take view-index interactions into account and achieve efficient storage space sharing. Candidate materialized views and indexes are selected through a data mining process. We also exploit cost models that evaluate the respective benefit of indexing and view materialization, and help select a relevant configuration of indexes and materialized views among the candidates. Experimental results show that our strategy performs better than an independent selection of materialized views and indexes.
In this study, we present a novel clinical decision support system and discuss its interpretability-related properties. It combines a decision set of rules with a machine learning scheme to offer global and local interpretability. More specifically, machine learning is used to predict the likelihood of each of those rules to be correct for a particular patient, which may also contribute to better predictive performances. Moreover, the reliability analysis of individual predictions is also addressed, contributing to further personalized interpretability. The combination of these several elements may be crucial to obtain the clinical stakeholders trust, leading to a better assessment of patients conditions and improvement of the physicians decision-making.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا