Do you want to publish a course? Click here

The MAJORANA DEMONSTRATOR: Progress towards showing the feasibility of a tonne-scale 76Ge neutrinoless double-beta decay experiment

118   0   0.0 ( 0 )
 Added by Padraic Finnerty
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

The MAJORANA DEMONSTRATOR will search for the neutrinoless double-beta decay of the 76Ge isotope with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own anti-particle, demonstrate that lepton number is not conserved, and provide information on the absolute mass-scale of the neutrino. The DEMONSTRATOR is being assembled at the 4850 foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be contained in a low-background environment and surrounded by passive and active shielding. The goals for the DEMONSTRATOR are: demonstrating a background rate less than 3 t$^{-1}$ y$^{-1}$ in the 4 keV region of interest (ROI) surrounding the 2039 keV 76Ge endpoint energy; establishing the technology required to build a tonne-scale germanium based double-beta decay experiment; testing the recent claim of observation of neutrinoless double-beta decay [H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, Mod. Phys. Lett. A21, 1547 (2006)]; and performing a direct search for light WIMPs (3-10 GeV).



rate research

Read More

Neutrinoless double-beta decay experiments can potentially determine the Majorana or Dirac nature of the neutrino, and aid in understanding the neutrino absolute mass scale and hierarchy. Future 76Ge-based searches target a half-life sensitivity of >10^27 y to explore the inverted neutrino mass hierarchy. Reaching this sensitivity will require a background rate of <1 count tonne^-1 y^-1 in a 4-keV-wide spectral region of interest surrounding the Q value of the decay. We investigate the overburden required to reach this background goal in a tonne-scale experiment with a compact (copper and lead) shield based on Monte Carlo calculations of cosmic-ray background rates. We find that, in light of the presently large uncertainties in these types of calculations, a site with an underground depth >~5200 mwe is required for a tonne-scale experiment with a compact shield similar to the planned 40-kg MAJORANA DEMONSTRATOR. The required overburden is highly dependent on the chosen shielding configuration and could be relaxed significantly if, for example, a liquid cryogen and water shield, or an active neutron shield were employed. Operation of the MAJORANA DEMONSTRATOR and GERDA detectors will serve to reduce the uncertainties on cosmic-ray background rates and will impact the choice of shielding style and location for a future tonne-scale experiment. 4/2013: The peer review process revealed that one of the veto rejection factors (the factor-of-4 described on p12) needs to be better established. Our reevaluation of this parameter to date has not yielded strong support for the value stated in the manuscript, and we require further study to develop a solid estimate. This further study will supersede the work described in this manuscript, and may or may not lead to the same conclusion regarding the ~>5200 mwe requirement for future tonne-scale 76Ge neutrinoless double beta decay experiments.
Neutrinoless double-beta decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos are Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The Majorana Collaboration is constructing the Majorana Demonstrator, a 40-kg modular germanium detector array, to search for the Neutrinoless double-beta decay of 76Ge and to demonstrate a background rate at or below 3 counts/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for 76Ge Neutrinoless double-beta decay. In this paper, we discuss the physics of neutrinoless double beta decay and then focus on the Majorana Demonstrator, including its design and approach to achieve ultra-low backgrounds and the status of the experiment.
The {sc Majorana Demonstrator will search for the neutrinoless double-beta decay of the isotope Ge-76 with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. The {sc Demonstrator} is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the {sc Demonstrator} and the details of its design.
The MJ Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-beta decay in $^{76}$Ge. The MJ DEM comprises 44.1~kg of Ge detectors (29.7 kg enriched in $^{76}$Ge) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at qval and a very low background with no observed candidate events in 10 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of $1.9times10^{25}$ yr (90% CL). This result constrains the effective Majorana neutrino mass to below 240 to 520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is $4.0_{-2.5}^{+3.1}$ counts/(FWHM t yr).
The observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana particle and provide information on the absolute scale of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR, an array of germanium detectors, to search for neutrinoless double-beta decay of 76-Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76-Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment. Operation of the DEMONSTRATOR aims to determine whether a future tonne-scale germanium experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76-Ge neutrinoless double-beta decay Q-value of 2039 keV.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا