Strange quark contributions to nucleon mass and spin from lattice QCD


Abstract in English

Contributions of strange quarks to the mass and spin of the nucleon, characterized by the observables f_Ts and Delta s, respectively, are investigated within lattice QCD. The calculation employs a 2+1-flavor mixed-action lattice scheme, thus treating the strange quark degrees of freedom in dynamical fashion. Numerical results are obtained at three pion masses, m_pi = 495 MeV, 356 MeV, and 293 MeV, renormalized, and chirally extrapolated to the physical pion mass. The value extracted for Delta s at the physical pion mass in the MSbar scheme at a scale of 2 GeV is Delta s = -0.031(17), whereas the strange quark contribution to the nucleon mass amounts to f_Ts =0.046(11). In the employed mixed-action scheme, the nucleon valence quarks as well as the strange quarks entering the nucleon matrix elements which determine f_Ts and Delta s are realized as domain wall fermions, propagators of which are evaluated in MILC 2+1-flavor dynamical asqtad quark ensembles. The use of domain wall fermions leads to mild renormalization behavior which proves especially advantageous in the extraction of f_Ts.

Download