We report the results of an experiment investigating coherence and correlation effects in a system of coupled donors. Two donors are strongly coupled to two leads in a parallel configuration within a nano-wire field effect transistor. By applying a magnetic field we observe interference between two donor-induced Kondo channels, which depends on the Aharonov-Bohm phase picked up by electrons traversing the structure. This results in a non-monotonic conductance as a function of magnetic field and clearly demonstrates that donors can be coupled through a many-body state in a coherent manner. We present a model which shows good qualitative agreement with our data. The presented results add to the general understanding of interference effects in a donor-based correlated system which may allow to create artificial lattices that exhibit exotic many-body excitations.