Liquid crystal spatial-mode converters for the orbital angular momentum of light


Abstract in English

We present a tunable liquid crystal device that converts pure orbital angular momentum eigenmodes of a light beam into equal-weight superpositions of opposite-handed eigenmodes and vice versa. For specific input states, the device may thus simulate the behavior of a {pi}/2 phase retarder in a given two-dimensional orbital angular momentum subspace, analogous to a quarter-wave plate for optical polarization. A variant of the same device generates the same final modes starting from a Gaussian input.

Download