Do you want to publish a course? Click here

The Spitzer Space Telescope Survey of the Orion A & B Molecular Clouds - Part I: A Census of Dusty Young Stellar Objects and a Study of their Mid-IR Variability

140   0   0.0 ( 0 )
 Added by S. T. Megeath
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a survey of the Orion A and B molecular clouds undertaken with the IRAC and MIPS instruments onboard Spitzer. In total, five distinct fields were mapped covering 9 sq. degrees in five mid-IR bands spanning 3-24 microns. The survey includes the Orion Nebula Cluster, the Lynds 1641, 1630 and 1622 dark clouds, and the NGC 2023, 2024, 2068 and 2071 nebulae. These data are merged with the 2MASS point source catalog to generate a catalog of eight band photometry. We identify 3479 dusty young stellar objects (YSOs) in the Orion molecular clouds by searching for point sources with mid-IR colors indicative of reprocessed light from dusty disks or infalling envelopes. The YSOs are subsequently classified on the basis of their mid-IR colors and their spatial distributions are presented. We classify 2991 of the YSOs as pre-main sequence stars with disks and 488 as likely protostars. Most of the sources were observed with IRAC in 2-3 epochs over 6 months; we search for variability between the epochs by looking for correlated variability in the 3.6 and 4.5 micron bands. We find that 50% of the dusty YSOs show variability. The variations are typically small (0.2 mag.) with the protostars showing a higher incidence of variability and larger variations. The observed correlations between the 3.6, 4.5, 5.8 and 8 micron variability suggests that we are observing variations in the heating of the inner disk due to changes in the accretion luminosity or rotating accretion hot spots.



rate research

Read More

We analyze the spatial distribution of dusty young stellar objects (YSOs) identified in the Spitzer Survey of the Orion Molecular clouds, augmenting these data with Chandra X-ray observations to correct for incompleteness in dense clustered regions. We also devise a scheme to correct for spatially varying incompleteness when X-ray data are not available. The local surface densities of the YSOs range from 1 pc$^{-2}$ to over 10,000 pc$^{-2}$, with protostars tending to be in higher density regions. This range of densities is similar to other surveyed molecular clouds with clusters, but broader than clouds without clusters. By identifying clusters and groups as continuous regions with surface densities $ge10$ pc$^{-2}$, we find that 59% of the YSOs are in the largest cluster, the Orion Nebular Cluster (ONC), while 13% of the YSOs are found in a distributed population. A lower fraction of protostars in the distributed population is evidence that it is somewhat older than the groups and clusters. An examination of the structural properties of the clusters and groups show that the peak surface densities of the clusters increase approximately linearly with the number of members. Furthermore, all clusters with more than 70 members exhibit asymmetric and/or highly elongated structures. The ONC becomes azimuthally symmetric in the inner 0.1 pc, suggesting that the cluster is only $sim 2$ Myr in age. We find the star formation efficiency (SFE) of the Orion B cloud is unusually low, and that the SFEs of individual groups and clusters are an order of magnitude higher than those of the clouds. Finally, we discuss the relationship between the young low mass stars in the Orion clouds and the Orion OB 1 association, and we determine upper limits to the fraction of disks that may be affected by UV radiation from OB stars or by dynamical interactions in dense, clustered regions.
The G333 giant molecular cloud contains a few star clusters and H II regions, plus a number of condensations currently forming stars. We have mapped 13 of these sources with the appearance of young stellar objects (YSOs) with the Spitzer Infrared Spectrograph in the SL, SH, and LH modules (5-36 micron). We use these spectra plus available photometry and images to characterize the YSOs. The spectral energy distributions (SEDs) of all sources peak between 35 and 110 micron, thereby showing their young age. The objects are divided into two groups: YSOs associated with extended emission in IRAC band 2 at 4.5 micron (`outflow sources) and YSOs that have extended emission in all IRAC bands peaking at the longest wavelengths (`red sources). The two groups of objects have distinctly different spectra: All the YSOs associated with outflows show evidence of massive envelopes surrounding the protostar because the spectra show deep silicate absorption features and absorption by ices at 6.0, 6.8, and 15.2 micron. We identify these YSOs with massive envelopes cool enough to contain ice-coated grains as the `bloated protostars in the models of Hosokawa et al. All spectral maps show ionized forbidden lines and PAH emission features. For four of the red sources, these lines are concentrated to the centres of the maps, from which we infer that these YSOs are the source of ionizing photons. Both types of objects show evidence of shocks, with most of the outflow sources showing a line of [S I] in the outflows and two of the red sources showing the more highly excited [Ne III] and [S IV] lines in outflow regions at some distance from the YSOs. The 4.5 micron emission seen in the IRAC band 2 images of the outflow sources is not due to H2 lines, which are too faint in the 5-10 micron wavelength region to be as strong as is needed to account for the IRAC band 2 emission.
60 - S. T. Megeath 2005
We present initial results from a survey of the Orion A and B molecular clouds made with the InfraRed Array Camera (IRAC) onboard the Spitzer Space Telescope. This survey encompasses a total of 5.6 square degrees with the sensitivity to detect objects below the hydrogen burning limit at an age of 1 Myr. These observations cover a number of known star forming regions, from the massive star forming clusters in the Orion Nebula and NGC 2024, to small groups of low mass stars in the L1641. We combine the IRAC photometry with photometry from the 2MASS point source catalog and use the resulting seven band data to identify stars with infrared excesses due to dusty disks and envelopes. Using the presence of an infrared excess as an indicator of youth, we show the distribution of young stars and protostars in the two molecular clouds. We find that roughly half of the stars are found in dense clusters surrounding the two regions of recent massive star formation in the Orion clouds, NGC 2024 and the Orion Nebula.
125 - N. Schneider 2013
A key parameter to the description of all star formation processes is the density structure of the gas. In this letter, we make use of probability distribution functions (PDFs) of Herschel column density maps of Orion B, Aquila, and Polaris, obtained with the Herschel Gould Belt survey (HGBS). We aim to understand which physical processes influence the PDF shape, and with which signatures. The PDFs of Orion B (Aquila) show a lognormal distribution for low column densities until Av 3 (6), and a power-law tail for high column densities, consistent with a rho r^-2 profile for the equivalent spherical density distribution. The PDF of Orion B is broadened by external compression due to the nearby OB stellar aggregates. The PDF of a quiescent subregion of the non-star-forming Polaris cloud is nearly lognormal, indicating that supersonic turbulence governs the density distribution. But we also observe a deviation from the lognormal shape at Av>1 for a subregion in Polaris that includes a prominent filament. We conclude that (i) the point where the PDF deviates from the lognormal form does not trace a universal Av-threshold for star formation, (ii) statistical density fluctuations, intermittency and magnetic fields can cause excess from the lognormal PDF at an early cloud formation stage, (iii) core formation and/or global collapse of filaments and a non-isothermal gas distribution lead to a power-law tail, and (iv) external compression broadens the column density PDF, consistent with numerical simulations.
266 - H. D. B. Cooper 2013
Near-infrared H- and K-band spectra are presented for 247 objects, selected from the Red MSX Source (RMS) survey as potential young stellar objects (YSOs). 195 (~80%) of the targets are YSOs, of which 131 are massive YSOs (L_BOL > 5x10^3 L_solar), M > 8M_solar. This is the largest spectroscopic study of massive YSOs to date, providing a valuable resource for the study of massive star formation. In this paper we present our exploratory analysis of the data. The YSOs observed have a wide range of embeddedness (2.7 < A_V < 114), demonstrating that this study covers minimally obscured objects right through to very red, dusty sources. Almost all YSOs show some evidence for emission lines, though there is a wide variety of observed properties. The most commonly detected lines are Brgamma, H_2, fluorescent FeII, CO bandhead, [FeII] and HeI 2-1 2^1S-2^1P, in order of frequency of occurrence. In total, ~40% of the YSOs display either fluorescent FeII 1.6878um or CO bandhead emission (or both), indicative of a circumstellar disc; however, no correlation of the strength of these lines with bolometric luminosity was found. We also find that ~60% of the sources exhibit [FeII] or H_2 emission, indicating the presence of an outflow. Three quarters of all sources have Brgamma in emission. A good correlation with bolometric luminosity was observed for both the Brgamma and H_2 emission line strengths, covering 1 L_solar< L_BOL < 3.5x10^5 L_solar. This suggests that the emission mechanism for these lines is the same for low-, intermediate-, and high-mass YSOs, i.e. high-mass YSOs appear to resemble scaled-
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا