No Arabic abstract
We report on a recent calculation of the properties of the $DNN$ system, a charmed meson with two nucleons. The system is analogous to the $bar K NN$ system substituting a strange quark by a charm quark. Two different methods are used to evaluate the binding and width, the Fixed Center approximation to the Faddeev equations and a variational calculation. In both methods we find that the system is bound by about 200 MeV and the width is smaller than 40 MeV, a situation opposite to the one of the $bar K NN$ system and which makes this state well suited for experimental observation.
To solve the spinor-spinor Bethe-Salpeter equation in Euclidean space we propose a novel method related to the use of hyperspherical harmonics. We suggest an appropriate extension to form a new basis of spin-angular harmonics that is suitable for a representation of the vertex functions. We present a numerical algorithm to solve the Bethe-Salpeter equation and investigate in detail the properties of the solution for the scalar, pseudoscalar and vector meson exchange kernels including the stability of bound states. We also compare our results to the non relativistic ones and to the results given by light front dynamics.
We study ground and radial excitations of flavor singlet and flavored pseudoscalar mesons within the framework of the rainbow-ladder truncation using an infrared massive and finite interaction in agreement with recent results for the gluon-dressing function from lattice QCD and Dyson-Schwinger equations. Whereas the ground-state masses and decay constants of the light mesons as well as charmonia are well described, we confirm previous observations that this truncation is inadequate to provide realistic predictions for the spectrum of excited and exotic states. Moreover, we find a complex conjugate pair of eigenvalues for the excited $D_{(s)}$ mesons, which indicates a non-Hermiticity of the interaction kernel in the case of heavy-light systems and the present truncation. Nevertheless, limiting ourselves to the leading contributions of the Bethe-Salpeter amplitudes, we find a reasonable description of the charmed ground states and their respective decay constants.
We consider a model of relativistic three-body scattering with a bound state in the two-body sub-channel. We show that the naive K-matrix type parametrization, here referred to as the B-matrix, has nonphysical singularities near the physical region. We show how to eliminate such singularities by using dispersion relations and also show how to reproduce unitarity relations by taking into account all relevant open channels.
The Bethe-Salpeter equation for three bosons with zero-range interaction is solved for the first time. For comparison the light-front equation is also solved. The input is the two-body scattering length and the outputs are the three-body binding energies, Bethe-Salpeter amplitudes and light-front wave functions. Three different regimes are analyzed: ({it i}) For weak enough two-body interaction the three-body system is unbound. ({it ii}) For stronger two-body interaction a three-body bound state appears. It provides an interesting example of a deeply bound Borromean system. ({it iii}) For even stronger two-body interaction this state becomes unphysical with a negative mass squared. However, another physical (excited) state appears, found previously in light-front calculations. The Bethe-Salpeter approach implicitly incorporates three-body forces of relativistic origin, which are attractive and increase the binding energy.
We show that the D^- meson will form narrow bound states with ^{208}Pb. Mean field potentials for the D^0, D^0-bar and D^- in ^{208}Pb are calculated self-consistently using the quark-meson coupling (QMC) model in local density approximation. The meson-^{208}Pb bound state energies are then calculated by solving the Klein-Gordon equation with these potentials. The experimental confirmation and comparison with the D^0-bar and D^0 will provide distinctive information on the nature of the interaction between the charmed meson and matter.