We study the family of rational sets of words, called completely reducible and which are such that the syntactic representation of their characteristic series is completely reducible. This family contains, by a result of Reutenauer, the submonoids generated by bifix codes and, by a result of Berstel and Reutenauer, the cyclic sets. We study the closure properties of this family. We prove a result on linear representations of monoids which gives a generalization of the result concerning the complete reducibility of the submonoid generated by a bifix code to sets called birecurrent. We also give a new proof of the result concerning cyclic sets.