The response of AGATA segmented HPGe detectors to gamma rays in the energy range 2-15 MeV was measured. The 15.1 MeV gamma rays were produced using the reaction d(11B,ng)12C at Ebeam = 19.1 MeV, while gamma-rays between 2 to 9 MeV were produced using an Am-Be-Fe radioactive source. The energy resolution and linearity were studied and the energy-to-pulse-height conversion resulted to be linear within 0.05%. Experimental interaction multiplicity distributions are discussed and compared with the results of Geant4 simulations. It is shown that the application of gamma-ray tracking allows a suppression of background radiation following neutron capture by Ge nuclei. Finally the Doppler correction for the 15.1 MeV gamma line, performed using the position information extracted with Pulse-shape Analysis, is discussed.