Do you want to publish a course? Click here

Model-independent $D^0-bar{D^0}$ mixing and CP violation studies with $D^0 to K^0_{rm S}pi^+pi^-$ and $D^0 to K^0_{rm S}K^+K^-$

288   0   0.0 ( 0 )
 Added by Guy Wilkinson
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

Simulation studies are performed to assess the sensitivity of a model-independent analysis of the flavour-tagged decays $D^0 to K^0_{rm S}pi^+pi^-$ and $D^0 to K^0_{rm S}K^+K^-$ to mixing and CP violation. The analysis takes as input measurements of the $D$ decay strong-phase parameters that are accessible in quantum-correlated $D-bar{D}$ pairs produced at the $psi(3770)$ resonance. It is shown that the model-independent approach is well suited to the very large data sets expected at an upgraded LHCb experiment, or future high luminosity $e^+e^-$ facility, and that with 100M $K^0_{rm S}pi^+pi^-$ decays a statistical precision of around 0.01 and $0.7^circ$ is achievable on the CP violation parameters $r_{CP}$ and $a_{CP}$, respectively. Even with this very large sample the systematic uncertainties associated with the strong-phase parameters will not be limiting, assuming that full use is made of the available $psi(3770)$ data sets of CLEO-c and BES-III. Furthermore, it is demonstrated that large flavour-tagged samples can themselves be exploited to provide information on the strong-phase parameters, a feature that will be beneficial in the measurement of the CKM angle $gamma/phi_3$ with $B^- to DK^-$ decays.



rate research

Read More

A search is performed for $D^{(*)+}_{sJ}$ mesons in the reactions $pp to D^{*+} K^0_{rm S} X$ and $pp to D^{*0} K^+ X$ using data collected at centre-of-mass energies of 7 and 8 TeV with the LHCb detector. For the $D^{*+} K^0_{rm S}$ final state, the decays $D^{*+} to D^0 pi^+$ with $D^0 to K^- pi^+$ and $D^0 to K^- pi^+ pi^+ pi^-$ are used. For $D^{*0} K^+$, the decay $D^{*0} to D^0 pi^0$ with $D^0 to K^- pi^+$ is used. A prominent $D_{s1}(2536)^+$ signal is observed in both $D^{*+} K^0_{rm S}$ and $D^{*0} K^+$ final states. The resonances $D^*_{s1}(2700)^+$ and $D^*_{s3}(2860)^+$ are also observed, yielding information on their properties, including spin-parity assignments. The decay $D^*_{s2}(2573)^+ to D^{*+} K^0_{rm S}$ is observed for the first time, at a significance of 6.9 $sigma$, and its branching fraction relative to the $D^*_{s2}(2573)^+ to D^+ K^0_{rm S}$ decay mode is measured.
A binned Dalitz plot analysis of the decays $B^0 to D K^{ast 0}$, with $D to K_{S}^{0} pi^{+} pi^{-}$ and $K_{S}^{0} K^{+} K^{-}$, is performed to measure the observables $x_pm$ and $y_pm$, which are related to the CKM angle $gamma$ and the hadronic parameters of the decays. The $D$ decay strong phase variation over the Dalitz plot is taken from measurements performed at the CLEO-c experiment, making the analysis independent of the $D$ decay model. With a sample of proton-proton collision data, corresponding to an integrated luminosity of $3.0,rm{fb}^{-1}$, collected by the LHCb experiment, the values of the $CP$ violation parameters are found to be $x_+ = 0.05 pm 0.35 pm 0.02$, $x_-=-0.31pm 0.20 pm 0.04$, $y_+=-0.81pm 0.28pm 0.06$ and $y_-=0.31pm 0.21 pm 0.05$, where the first uncertainties are statistical and the second systematic. These observables correspond to values $gamma$ = $(71 pm 20)^circ$, $r_{B^0} = 0.56pm 0.17$ and $delta_{B^0} = (204,^{+21}_{-20})^circ$. The parameters $r_{B^0}$ and $delta_{B^0}$ are the magnitude ratio and strong phase difference between the suppressed and favoured $B^0$ decay amplitudes, and have been measured in a region of $pm 50$ MeV/$c^2$ around the $K^{ast}(892)^{0}$ mass and with the magnitude of the cosine of the $K^{ast}(892)^{0}$ helicity angle larger than 0.4.
A search for time-dependent violation of the charge-parity symmetry in $D^0 to K^+ K^-$ and $D^0 to pi^+ pi^-$ decays is performed at the LHCb experiment using proton-proton collision data recorded from 2015 to 2018 at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb$^{-1}$. The $D^0$ meson is required to originate from a $D^*(2010)^+ to D^0 pi^+$ decay, such that its flavour at production is identified by the charge of the accompanying pion. The slope of the time-dependent asymmetry of the decay rates of $D^0$ and $bar{D}^0$ mesons into the final states under consideration is measured to be $Delta Y_{K^+ K^-} = (-2.3 pm 1.5 pm 0.3) times 10^{-4}$, $Delta Y_{pi^+ pi^-} = (-4.0 pm 2.8 pm 0.4)times 10^{-4}$, where the first uncertainties are statistical and the second are systematic. These results are compatible with the conservation of the $CP$ symmetry at the level of 2 standard deviations and improve the precision by nearly a factor of two.
94 - K. Arms , et al. 2003
Using a data sample corresponding to 13.7 fb^-1 collected with the CLEO II and II.V detectors, we report new branching fraction measurements for two Cabibbo-suppressed decay modes of the D^+ meson: Br(D^+ to pi^+ pi^0) = (1.3 +/- 0.2) x 10^-3 and Br(D^+ to bar{K}^0 K^+) = (5.2 +/- 0.6) x 10^-3 which are significant improvements over past measurements. The errors include statistical and systematical uncertainties as well as the uncertainty in the absolute D^+ branching fraction scale. We also set the first 90% confidence level upper limit on the branching fraction of the doubly Cabibbo-suppressed decay mode Br(D^+ to K^+ pi^0) < 4.2 x 10^-4.
We present an observation and rate measurement of the decay D0 -> K+pi-pi0 produced in 9/fb of e+e- collisions near the Upsilon(4S) resonance. The signal is inconsistent with an upward fluctuation of the background by 4.9 standard deviations. We measured the rate of D0 -> K+pi-pi0 normalized to the rate of D0bar -> K+pi-pi0 to be 0.0043 +0.0011 -0.0010 (stat) +/- 0.0007 (syst). This decay can be produced by doubly-Cabibbo-suppressed decays or by the D0 evolving into a D0bar through mixing, followed by a Cabibbo-favored decay to K+pi-pi0. We also found the CP asymmetry A=(8 +25 -22)% to be consistent with zero.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا