We report normal and superconducting properties of the Rashba-type noncentrosymmetric com- pound CaIrSi3, using single crystalline samples with nearly 100% superconducting volume fraction. The electronic density of states revealed by the hard x-ray photoemission spectroscopy can be well explained by the relativistic first-principle band calculation. This indicates that strong spin-orbit interaction indeed affects the electronic states of this compound. The obtained H - T phase diagram exhibits only approximately 10% anisotropy, indicating that the superconducting properties are almost three dimensional. Nevertheless, strongly anisotropic vortex pinning is observed.