Do you want to publish a course? Click here

Advantages of gated silicon single photon detectors

126   0   0.0 ( 0 )
 Added by Tommaso Lunghi
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a gated silicon single photon detector based on a commercially available avalanche photodiode. Our detector achieves a photon detection efficiency of 45pm5% at 808 nm with 2x 10^-6 dark count per ns at -30V of excess bias and -30{deg}C. We compare gated and free-running detectors and show that this mode of operation has significant advantages in two representative experimental scenarios: detecting a single photon either hidden in faint continuous light or after a strong pulse. We also explore, at different temperatures and incident light intensities, the charge persistence effect, whereby a detector clicks some time after having been illuminated.



rate research

Read More

In this work, we present a novel device that is a combination of a superconducting nanowire single-photon detector and a superconducting multi-level memory. We show that these devices can be used to count the number of detections through single-photon to single-flux conversion. Electrical characterization of the memory properties demonstrates single-flux quantum (SFQ) separated states. Optical measurements using attenuated laser pulses with different mean photon number, pulse energies and repetition rates are shown to differentiate single-photon detection from other possible phenomena, such as multi-photon detection and thermal activation. Finally, different geometries and material stacks to improve device performance, as well as arraying methods are discussed.
Integrated quantum photonics, which allows for the development and implementation of chip-scale devices, is recognized as a key enabling technology on the road towards scalable quantum networking schemes. However, many state-of-the-art integrated quantum photonics demonstrations still require the coupling of light to external photodetectors. On-chip silicon single-photon avalanche diodes (SPADs) provide a viable solution as they can be seamlessly integrated with photonic components, and operated with high efficiencies and low dark counts at temperatures achievable with thermoelectric cooling. Moreover, they are useful in applications such as LIDAR and low-light imaging. In this paper, we report the design and simulation of silicon waveguide-based SPADs on a silicon-on-insulator platform for visible wavelengths, focusing on two device families with different doping configurations: p-n+ and p-i-n+. We calculate the photon detection efficiency (PDE) and timing jitter at an input wavelength of 640 nm by simulating the avalanche process using a 2D Monte Carlo method, as well as the dark count rate (DCR) at 243 K and 300 K. For our simulated parameters, the optimal p-i-n+ SPADs show the best device performance, with a saturated PDE of 52.4 +/- 0.6% at a reverse bias voltage of 31.5 V, full-width-half-max (FWHM) timing jitter of 10 ps, and a DCR of < 5 counts per second at 243 K.
There are several applications which require high position resolution UV imaging. For these applications we have developed and successfully tested a new version of a 2D UV single photon imaging detector based on a microgap RPC. The main features of such a detectors is the high position resolution - 30 micron in digital form and the high quantum efficiency (1-8% in the spectral interval of 220-140 nm). Additionally, they are spark- protected and can operate without any feedback problems at high gains, close to a streamer mode. In attempts to extend the sensitivity of RPCs to longer wavelengths we have successfully tested the operation of the first sealed parallel-plate gaseous detectors with CsTe photocathodes. Finally, the comparison with other types of photosensitive detectors is given and possible fields of applications are identified.
We report an automated characterization of a single-photon detector based on commercial silicon avalanche photodiode (PerkinElmer C30902SH). The photodiode is characterized by I-V curves at different illumination levels (darkness, 10 pW and 10 uW), dark count rate and photon detection efficiency at different bias voltages. The automated characterization routine is implemented in C++ running on a Linux computer.
We show several techniques for using integrated-photonic waveguide structures to simultaneously characterize multiple waveguide-integrated superconducting-nanowire detectors with a single fiber input. The first set of structures allows direct comparison of detector performance of waveguide-integrated detectors with various widths and lengths. The second type of demonstrated integrated-photonic structure allows us to achieve detection with a high dynamic range. This device allows a small number of detectors to count photons across many orders of magnitude in count rate. However, we find a stray light floor of -30 dB limits the dynamic range to three orders of magnitude. To assess the utility of the detectors for use in synapses in spiking neural systems, we measured the response with average incident photon numbers ranging from less than $10^{-3}$ to greater than $10$. The detector response is identical across this entire range, indicating that synaptic responses based on these detectors will be independent of the number of incident photons in a communication pulse. Such a binary response is ideal for communication in neural systems. We further demonstrate that the response has a linear dependence of output current pulse height on bias current with up to a factor of 1.7 tunability in pulse height. Throughout the work, we compare room-temperature measurements to cryogenic measurements. The agreement indicates room-temperature measurements can be used to determine important properties of the detectors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا