Do you want to publish a course? Click here

The Co-ordinated Radio and Infrared Survey for High Mass Star Formation (The CORNISH Survey) - I. Survey Design

99   0   0.0 ( 0 )
 Added by Cormac Purcell
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe the motivation, design and implementation of the CORNISH survey, an arcsecond resolution radio continuum survey of the inner Galactic plane at 5 GHz using the Karl G. Jansky Very Large Array (VLA). It is a blind survey co-ordinated with the northern Spitzer GLIMPSE I region covering 10 deg < l < 65 deg and |b| < 1 deg at similar resolution. We discuss in detail the strategy that we employed to control the shape of the synthesised beam across this survey that covers a wide range of fairly low declinations. Two snapshots separated by 4 hours in hour angle kept the beam elongation to less that 1.5 over 75% of the survey area and less than 2 over 98% of the survey. The prime scientific motivation is to provide an unbiased survey for ultra-compact HII regions to study this key phase in massive star formation. A sensitivity around 2 mJy will allow the automatic distinction between radio loud and quiet mid-IR sources found in the Spitzer surveys. This survey has many legacy applications beyond star formation including evolved stars, active stars and binaries, and extragalactic sources. The CORNISH survey for compact ionized sources complements other Galactic plane surveys that target diffuse and non-thermal sources as well as atomic and molecular phases to build up a complete picture of the ISM in the Galaxy.



rate research

Read More

A catalogue of 239 ultra-compact HII regions (UCHIIs) found in the CORNISH survey at 5 GHz and 1.5 resolution in the region $10^{circ} < l < 65^{circ}, ~|b| < 1^{circ}$ is presented. This is the largest complete and well-selected sample of UCHIIs to date and provides the opportunity to explore the global and individual properties of this key state in massive star formation at multiple wavelengths. The nature of the candidates was validated, based on observational properties and calculated spectral indices, and the analysis is presented in this work. The physical sizes, luminosities and other physical properties were computed by utilising literature distances or calculating the distances whenever a value was not available. The near- and mid-infrared extended source fluxes were measured and the extinctions towards the UCHIIs were computed. The new results were combined with available data at longer wavelengths and the spectral energy distributions (SEDs) were reconstructed for 177 UCHIIs. The bolometric luminosities obtained from SED fitting are presented. By comparing the radio flux densities to previous observational epochs, we find about 5% of the sources appear to be time variable. This first high-resolution area survey of the Galactic plane shows that the total number of UCHIIs in the Galaxy is ~ 750 - a factor of 3-4 fewer than found in previous large area radio surveys. It will form the basis for future tests of models of massive star formation.
142 - M. L. N. Ashby 2011
Star formation is arguably the most important physical process in the cosmos. It is a fundamental driver of galaxy evolution and the ultimate source of most of the energy emitted by galaxies. A correct interpretation of star formation rate (SFR) measures is therefore essential to our understanding of galaxy formation and evolution. Unfortunately, however, no single SFR estimator is universally available or even applicable in all circumstances: the numerous galaxies found in deep surveys are often too faint (or too distant) to yield significant detections with most standard SFR measures, and until now there have been no global, multi-band observations of nearby galaxies that span all the conditions under which star-formation is taking place. To address this need in a systematic way, we have undertaken a multi-band survey of all types of star-forming galaxies in the local Universe. This project, the Star Formation Reference Survey (SFRS), is based on a statistically valid sample of 369 nearby galaxies that span all existing combinations of dust temperature, SFR, and specific SFR. Furthermore, because the SFRS is blind with respect to AGN fraction and environment it serves as a means to assess the influence of these factors on SFR. Our panchromatic global flux measurements (including GALEX FUV+NUV, SDSS ugriz, 2MASS JHKs, Spitzer 3-8{mu}m, and others) furnish uniform SFR measures and the context in which their reliability can be assessed. This paper describes the SFRS survey strategy, defines the sample, and presents the multi-band photometry collected to date.
We present a description of the Dragonfly Wide Field Survey (DWFS), a deep photometric survey of a wide area of sky. The DWFS covers 330 $mathrm{deg}^2$ in the equatorial GAMA fields and the Stripe 82 fields in the SDSS $g$ and $r$ bands. It is carried out with the 48-lens Dragonfly Telephoto Array, a telescope that is optimized for the detection of low surface brightness emission. The main goal of the survey is to study the dwarf galaxy population beyond the Local Group. In this paper, we describe the survey design and show early results. We reach $1sigma$ depths of $mu_gapprox 31$ mag arcsec$^{-2}$ on arcminute scales and show that Milky Way satellites such as Sextans, Bootes, and Ursa Major should be detectable out to $Dgtrsim 10$ Mpc. We also provide an overview of the elements and operation of the 48-lens Dragonfly telescope and a detailed description of its data reduction pipeline. The pipeline is fully automated, with individual frames subjected to a rigorous series of quality tests. The sky subtraction is performed in two stages, ensuring that emission features with spatial scales up to $sim 0.^{circ}9 times 0.^{circ}6$ are preserved. The DWFS provides unparalleled sensitivity to low surface brightness features on arcminute scales.
We present the VIMOS Spectroscopic Survey of a Supercluster in the COSMOS field (VIS3COS) at z~0.84. We use VIMOS high-resolution spectra (GG475 filter) to spectroscopically select 490 galaxies in and around the super-structure and an additional 481 galaxies in the line of sight. We present the redshift distribution, the catalog to be made public and the first results on the properties of individual galaxies and stacked spectra (3500{AA}<lambda<4200{AA} rest-frame). We probe a wide range of densities and environments (from low-density field to clusters and rich groups). We find a decrease in the median star formation rate from low to high density environments in all bins of stellar mass and a sharp rise of the quenched fraction (from ~10% to ~40-60%) of intermediate stellar mass galaxies $(10<log_{10}left(M_star/mathrm{M_odot}right)<10.75)$ from filaments to clusters. The quenched fraction for massive galaxies shows little dependence on the environment being constant at ~30-40%. We find a break in the strength of the [OII] emission, with nearly constant line equivalent widths at lower densities (~-11{AA}) and then a drop to ~-2.5{AA} towards higher densities. The break in the [OII] line strength happens at similar densities ($log_{10}(1+delta)sim0.0-0.5$) as the observed rise in the quenched fraction. Our results may provide further clues regarding the different environmental processes affecting galaxies with different stellar masses and highlight the advantages of a single dataset in the COSMOS field probing a wide range of stellar masses and environments. We hypothesize that quenching mechanisms are enhanced in high-density regions.
We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from $sim10$--$40:rm{mu}rm{m}$. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths, causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational results for the first eight protostars in the survey, i.e., multiwavelength images, including some ancillary ground-based MIR observations and archival {it{Spitzer}} and {it{Herschel}} data. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blueshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang and Tan models, based on the Turbulent Core Model of McKee and Tan, imply the sources have protostellar masses $m_*sim10$--50$:M_odot$ accreting at $sim10^{-4}$--$10^{-3}:M_odot:{rm{yr}}^{-1}$ inside cores of initial masses $M_csim30$--500$:M_odot$ embedded in clumps with mass surface densities $Sigma_{rm{cl}}sim0.1$--3$:{rm{g:cm}^{-2}}$. Fitting Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates $sim100times$ smaller. We discuss reasons for these differences and overall implications of these first survey results for massive star formation theories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا