No Arabic abstract
Supernovae (SNe), the luminous explosions of stars, were observed since antiquity, with typical peak luminosity not exceeding 1.2x10^{43} erg/s (absolute magnitude >-19.5 mag). It is only in the last dozen years that numerous examples of SNe that are substantially super-luminous (>7x10^{43} erg/s; <-21 mag absolute) were well-documented. Reviewing the accumulated evidence, we define three broad classes of super-luminous SN events (SLSNe). Hydrogen-rich events (SLSN-II) radiate photons diffusing out from thick hydrogen layers where they have been deposited by strong shocks, and often show signs of interaction with circumstellar material. SLSN-R, a rare class of hydrogen-poor events, are powered by very large amounts of radioactive 56Ni and arguably result from explosions of very massive stars due to the pair instability. A third, distinct group of hydrogen-poor events emits photons from rapidly-expanding hydrogen-poor material distributed over large radii, and are not powered by radioactivity (SLSN-I). These may be the hydrogen-poor analogs of SLSN-II.
Super-luminous supernovae that radiate more than 10^44 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of pair-instability supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-30 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of 56Ni are synthesized; this isotope decays to 56Fe via 56Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6x10^-6 times that of the core-collapse rate.
We present optical spectra and light curves for three hydrogen-poor super-luminous supernovae followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). Time series spectroscopy from a few days after maximum light to 100 days later shows them to be fairly typical of this class, with spectra dominated by Ca II, Mg II, Fe II and Si II, which evolve slowly over most of the post-peak photospheric phase. We determine bolometric light curves and apply simple fitting tools, based on the diffusion of energy input by magnetar spin-down, 56Ni decay, and collision of the ejecta with an opaque circumstellar shell. We investigate how the heterogeneous light curves of our sample (combined with others from the literature) can help to constrain the possible mechanisms behind these events. We have followed these events to beyond 100-200 days after peak, to disentangle host galaxy light from fading supernova flux and to differentiate between the models, which predict diverse behaviour at this phase. Models powered by radioactivity require unrealistic parameters to reproduce the observed light curves, as found by previous studies. Both magnetar heating and circumstellar interaction still appear to be viable candidates. A large diversity is emerging in observed tail-phase luminosities, with magnetar models failing in some cases to predict the rapid drop in flux. This would suggest either that magnetars are not responsible, or that the X-ray flux from the magnetar wind is not fully trapped. The light curve of one object shows a distinct re-brightening at around 100d after maximum light. We argue that this could result either from multiple shells of circumstellar material, or from a magnetar ionisation front breaking out of the ejecta.
LBVs are massive evolved stars that suffer sporadic and violent mass-loss events. They have been proposed as the progenitors of some core-collapse SNe, but this idea is still debated due to the lack of direct evidence. Since SNRs can carry in their morphology the fingerprints of the progenitor stars as well as of the inhomogeneous CSM sculpted by the progenitors, the study of SNRs from LBVs could help to place core-collapse SNe in context with the evolution of massive stars. We investigate the physical, chemical and morphological properties of the remnants of SNe originating from LBVs, in order to search for signatures, revealing the nature of the progenitors, in the ejecta distribution and morphology of the remnants. As a template of LBVs, we considered the actual LBV candidate Gal 026.47+0.02. We selected a grid of models, which describe the evolution of a massive star with properties consistent with those of Gal 026.47+0.02 and its final fate as core-collapse SN. We developed a 3D HD model that follows the post-explosion evolution of the ejecta from the breakout of the shock wave at the stellar surface to the interaction of the SNR with a CSM characterized by two dense nested toroidal shells, parametrized in agreement with multi-wavelength observations of Gal 026.47+0.02. Our models show a strong interaction of the blast wave with the CSM which determines an important slowdown of the expansion of the ejecta in the equatorial plane where the two shells lay, determining a high degree of asymmetry in the remnant. After 10000 years of evolution the ejecta show an elongated shape forming a broad jet-like structure caused by the interaction with the shells and oriented along the axis of the toroidal shells.
Over a decade ago, a group of supernova explosions with peak luminosities far exceeding (often by >100) those of normal events, has been identified. These superluminous supernovae (SLSNe) have been a focus of intensive study. I review the accumulated observations and discuss the implications for the physics of these extreme explosions. SLSNe can be classified into hydrogen poor (SLSNe-I) and hydrogen rich (SLSNe-II) events. Combining photometric and spectroscopic analysis of samples of nearby SLSNe-I and lower-luminosity events, a threshold of M_g<-19.8 mag at peak appears to separate SLSNe-I from the normal population. SLSN-I light curves can be quite complex, presenting both early bumps and late post-peak undulations. SLSNe-I spectroscopically evolve from an early hot photospheric phase with a blue continuum and weak absorption lines, through a cool photospheric phase resembling spectra of SNe Ic, and into the late nebular phase. SLSNe-II are not nearly as well studied, lacking information based on large sample studies. Proposed models for the SLSN power source are challenged to explain all the observations. SLSNe arise from massive progenitors, with some events associated with very massive stars (M>40 solar). Host galaxies of SLSNe in the nearby universe tend to have low mass and sub-solar metallicity. SLSNe are rare, with rates <100 times lower than ordinary SNe. SLSN cosmology and their use as beacons to study the high-redshift universe offer exciting future prospects.
We study the spectroscopic properties of a selected sample of 26 events within Core Collapse Supernovae (CCSNe) family. Special attention is paid to the nebular oxygen forbidden line [O I] 6300,6364AA doublet. We analyze the line flux ratio $F_{6300}/F_{6364}$, and infer information about the optical depth evolution, densities, volume-filling factors in the oxygen emitting zones. The line luminosity is measured for the sample events and its evolution is discussed on the basis of the bolometric light curve properties in type II and in type Ib-c SNe. The luminosities are then translated into oxygen abundances using two different methods. The resulting oxygen amounts are combined with the recovered $^{56}$Ni masses and compared with theoretical models by means of the $[O/Fe] .vs. M_{ms}$ diagram. Two distinguishable and continuous populations, corresponding to Ib-c and type II SNe, are found. The higher mass nature of the ejecta in type II objects is also imprinted on the [Ca II] 7291,7324AA over [O I] 6300,6364AA luminosity ratios. Our results may be used as input parameters for theoretical models studying the chemical enrichment of galaxies.