Do you want to publish a course? Click here

Superfluid instability of r-modes in differentially rotating neutron stars

281   0   0.0 ( 0 )
 Added by Nils Andersson
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superfluid hydrodynamics affects the spin-evolution of mature neutron stars, and may be key to explaining timing irregularities such as pulsar glitches. However, most models for this phenomenon exclude the global instability required to trigger the event. In this paper we discuss a mechanism that may fill this gap. We establish that small scale inertial r-modes become unstable in a superfluid neutron star that exhibits a rotational lag, expected to build up due to vortex pinning as the star spins down. Somewhat counterintuitively, this instability arises due to the (under normal circumstances dissipative) vortex-mediated mutual friction. We explore the nature of the superfluid instability for a simple incompressible model, allowing for entrainment coupling between the two fluid components. Our results recover a previously discussed dynamical instability in systems where the two components are strongly coupled. In addition, we demonstrate for the first time that the system is secularly unstable (with a growth time that scales with the mutual friction) throughout much of parameter space. Interestingly, large scale r-modes are also affected by this new aspect of the instability. We analyse the damping effect of shear viscosity, which should be particularly efficient at small scales, arguing that it will not be sufficient to completely suppress the instability in astrophysical systems.



rate research

Read More

Dynamical instabilities in protoneutron stars may produce gravitational waves whose observation could shed light on the physics of core-collapse supernovae. When born with sufficient differential rotation, these stars are susceptible to a shear instability (the low-T/|W| instability), but such rotation can also amplify magnetic fields to strengths where they have a considerable impact on the dynamics of the stellar matter. Using a new magnetohydrodynamics module for the Spectral Einstein Code, we have simulated a differentially-rotating neutron star in full 3D to study the effects of magnetic fields on this instability. Though strong toroidal fields were predicted to suppress the low-T/|W| instability, we find that they do so only in a small range of field strengths. Below 4e13 G, poloidal seed fields do not wind up fast enough to have an effect before the instability saturates, while above 5e14 G, magnetic instabilities can actually amplify a global quadrupole mode (this threshold may be even lower in reality, as small-scale magnetic instabilities remain difficult to resolve numerically). Thus, the prospects for observing gravitational waves from such systems are not in fact diminished over most of the magnetic parameter space. Additionally, we report that the detailed development of the low-T/|W| instability, including its growth rate, depends strongly on the particular numerical methods used. The high-order methods we employ suggest that growth might be considerably slower than found in some previous simulations.
We investigate the nature of low T/W dynamical instabilities in differentially rotating stars by means of linear perturbation. Here, T and W represent rotational kinetic energy and the gravitational binding energy of the star. This is the first attempt to investigate low T/W dynamical instabilities as a complete set of the eigenvalue problem. Our equilibrium configuration has constant specific angular momentum distribution, which potentially contains a singular solution in the perturbed enthalpy at corotation radius in linear perturbation. We find the unstable normal modes of differentially rotating stars by solving the eigenvalue problem along the equatorial plane of the star, imposing the regularity condition on the center and the vanished enthalpy at the oscillating equatorial surface. We find that the existing pulsation modes become unstable due to the existence of the corotation radius inside the star. The feature of the unstable mode eigenfrequency and its eigenfunction in the linear analysis roughly agrees with that in three-dimensional hydrodynamical simulations in Newtonian gravity. Therefore, our normal mode analysis in the equatorial motion proves valid to find the unstable equilibrium stars efficiently. Moreover, the nature of the eigenfunction that oscillates between corotation and the surface radius for unstable stars requires reinterpretation of the pulsation modes in differentially rotating stars.
We investigate the nonlinear behaviour of the dynamically unstable rotating star for the bar mode by three-dimensional hydrodynamics in Newtonian gravity. We find that an oscillation along the rotation axis is induced throughout the growth of the unstable bar mode, and that its characteristic frequency is twice as that of the bar mode, which oscillates mainly along the equatorial plane. A possibility to observe Faraday resonance in gravitational waves is demonstrated and discussed.
For the first time nonradial oscillations of superfluid nonrotating stars are self-consistently studied at finite stellar temperatures. We apply a realistic equation of state and realistic density dependent model of critical temperature of neutron and proton superfluidity. In particular, we discuss three-layer configurations of a star with no neutron superfluidity at the centre and in the outer region of the core but with superfluid intermediate region. We show, that oscillation spectra contain a set of modes whose frequencies can be very sensitive to temperature variations. Fast temporal evolution of the pulsation spectrum in the course of neutron star cooling is also analysed.
97 - Lars Bildsten 1999
Recent work has raised the exciting possibility that r-modes (Rossby waves) in rotating neutron star cores might be strong gravitational wave sources. We estimate the effect of a solid crust on their viscous damping rate and show that the dissipation rate in the viscous boundary layer between the oscillating fluid and the nearly static crust is >10^5 times higher than that from the shear throughout the interior. This increases the minimum frequency for the onset of the gravitational r-mode instability to at least 500 Hz when the core temperature is less than 10^10 K. It eliminates the conflict of the r-mode instability with the accretion-driven spin-up scenario for millisecond radio pulsars and makes it unlikely that the r-mode instability is active in accreting neutron stars. For newborn neutron stars, the formation of a solid crust shortly after birth affects their gravitational wave spin-down and hence detectability by ground-based interferometric gravitational wave detectors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا