Do you want to publish a course? Click here

Reddening and Extinction Toward the Galactic Bulge from OGLE-III: The Inner Milky Ways Rv ~ 2.5 Extinction Curve

212   0   0.0 ( 0 )
 Added by David Nataf
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We combine VI photometry from OGLE-III with VVV and 2MASS measurements of E(J-K_{s}) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge. We show that the extinction is well-fit by the relation A_{I} = 0.7465*E(V-I) + 1.3700*E(J-K_{s}), or, equivalently, A_{I} = 1.217*E(V-I)(1+1.126*(E(J-K_{s})/E(V-I)-0.3433)). The optical and near-IR reddening law toward the inner Galaxy approximately follows an R_{V} approx 2.5 extinction curve with a dispersion {sigma}_{R_{V}} approx 0.2, consistent with extragalactic investigations of the hosts of type Ia SNe. Differential reddening is shown to be significant on scales as small as as our mean field size of 6, with the 1{sigma} dispersion in reddening averaging 9% of total reddening for our fields. The intrinsic luminosity parameters of the Galactic bulge red clump (RC) are derived to be (M_{I,RC}, sigma_{I,RC,0}, (V-I)_{RC,0}, sigma_{(V-I)_{RC}}, (J-K_{s})_{RC,0}) = (-0.12, 0.09, 1.06, 0.121, 0.66). Our measurements of the RC brightness, brightness dispersion and number counts allow us to estimate several Galactic bulge structural parameters. We estimate a distance to the Galactic center of 8.20 kpc, resolving previous discrepancies in distance determinations to the bulge based on I-band observations. We measure an upper bound on the tilt {alpha} approx 40{deg}. between the bars major axis and the Sun-Galactic center line of sight, though our brightness peaks are consistent with predictions of an N-body model oriented at {alpha} approx 25{deg}. The number of RC stars suggests a total stellar mass for the Galactic bulge of 2.0*10^{10} M_{odot}, if one assumes a Salpeter IMF.



rate research

Read More

We investigate interstellar extinction curve variations toward $sim$4 deg$^{2}$ of the inner Milky Way in $VIJK_{s}$ photometry from the OGLE-III and $VVV$ surveys, with supporting evidence from diffuse interstellar bands and $F435W,F625W$ photometry. We obtain independent measurements toward $sim$2,000 sightlines of $A_{I}$, $E(V-I)$, $E(I-J)$, and $E(J-K_{s})$, with median precision and accuracy of 2%. We find that the variations in the extinction ratios $A_{I}/E(V-I)$, $E(I-J)/E(V-I)$ and $E(J-K_{s})/E(V-I)$ are large (exceeding 20%), significant, and positively correlated, as expected. However, both the mean values and the trends in these extinction ratios are drastically shifted from the predictions of Cardelli and Fitzpatrick, regardless of how $R_{V}$ is varied. Furthermore, we demonstrate that variations in the shape of the extinction curve has at least two degrees of freedom, and not one (e.g. $R_{V}$), which we conform with a principal component analysis. We derive a median value of $<A_{V}/A_{Ks}>=13.44$, which is $sim$60% higher than the standard value. We show that the Wesenheit magnitude $W_{I}=I-1.61(I-J)$ is relatively impervious to extinction curve variations. Given that these extinction curves are linchpins of observational cosmology, and that it is generally assumed that $R_{V}$ variations correctly capture variations in the extinction curve, we argue that systematic errors in the distance ladder from studies of type Ia supernovae and Cepheids may have been underestimated. Moreover, the reddening maps from the Planck experiment are shown to systematically overestimate dust extinction by $sim$100%, and lack sensitivity to extinction curve variations.
53 - Takahiro Sumi 2003
We present the reddening (E(V-I)) and Extinction maps in V-band (A_V) and I-band (A_I) for 48 Optical Gravitational Lensing Experiment II (OGLE-II) Galactic bulge (GB) fields, covering a range of $-11^circ <l< 11^circ$, with the total area close to 11 square degrees. These measurements are based on two-band photometry of Red Clump Giant (RCG) stars in OGLE-II VI maps of GB. We confirm the anomalous value of the ratio of total to selective extinction $R_{VI} = A_V / E(V-I) = 1.9 sim 2.1$, depending on the line of sight, as measured by Udalski (2003). By using the average value of $R_{VI}=1.964$ with the standard deviation sdev=0.085, we measured E(V-I), A_V and A_I, and we obtained extinction and reddening maps with a high spatial resolution of $ 26.7sim 106.8$, depending on the stellar density of each field. We assumed that average, reddening corrected colours of red clump giants are the same in every field. The maps cover the range 0.42<E(V-I)<3.5, 0.83<A_V<6.9 and 0.41<A_I<3.4 mag respectively. The zero points of these maps are calibrated by using V-K colours of 20 RR Lyrae ab variables (RRab) in Baades window. The apparent reddening corrected I-band magnitudes of the RCGs change by +0.4 mag while the Galactic coordinate l varies from $+5^{circ}$ to $-5^{circ}$, indicating that these stars are in the Galactic Bar. The reddening corrected colour of RRab and RCGs in GB are consistent with colours of local stars, while in the past these colours were claimed to be different.
The dust extinction curve is a critical component of many observational programs and an important diagnostic of the physics of the interstellar medium. Here we present new measurements of the dust extinction curve and its variation towards tens of thousands of stars, a hundred-fold larger sample than in existing detailed studies. We use data from the APOGEE spectroscopic survey in combination with ten-band photometry from Pan-STARRS1, 2MASS, and WISE. We find that the extinction curve in the optical through infrared is well characterized by a one-parameter family of curves described by R(V). The extinction curve is more uniform than suggested in past works, with sigma(R(V)) = 0.18, and with less than one percent of sight lines having R(V) > 4. Our data and analysis have revealed two new aspects of Galactic extinction: first, we find significant, wide-area variations in R(V) throughout the Galactic plane. These variations are on scales much larger than individual molecular clouds, indicating that R(V) variations must trace much more than just grain growth in dense molecular environments. Indeed, we find no correlation between R(V) and dust column density up to E(B-V) ~ 2. Second, we discover a strong relationship between R(V) and the far-infrared dust emissivity.
Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily-reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both 2D and 3D extinction maps, using independent extinction measures based on a large spectroscopic sample of stars towards the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution $H$-band APOGEE spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants towards the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, 2D bulge extinction maps and 3D extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the 2D and 3D extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.
107 - David M. Nataf 2016
I review the literature covering the issue of interstellar extinction toward the Milky Way bulge, with emphasis placed on findings from planetary nebulae, RR Lyrae, and red clump stars. I also report on observations from HI gas and globular clusters. I show that there has been substantial progress in this field in recent decades, most particularly from red clump stars. The spatial coverage of extinction maps has increased by a factor $sim 100 times$ in the past twenty years, and the total-to-selective extinction ratios reported have shifted by $sim$20-25%, indicative of the improved accuracy and separately, of a steeper-than-standard extinction curve. Problems remain in modelling differential extinction, explaining anomalies involving the planetary nebulae, and understanding the difference between bulge extinction coefficients and standard literature values.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا