The exploration of the relation between galaxy sizes and other physical parameters has provided important clues for understanding galaxy formation. We use the CANDELS Deep+Wide surveys in the GOODS-South, UDS and EGS fields, complemented by data from the HUDF09 program, to address the relation between size and luminosity at zsim7. We select 153 z-band drop-out galaxies in six different fields characterized by a wide combination of depth and areal coverage, ideally suited to sample without biases the observed size-magnitude plane. Detailed simulations allow us to derive the completeness as a function of size and magnitude and to quantify measurements errors/biases. We find that the half light radius distribution function of zsim7 galaxies fainter than J=26.6 is peaked at <0.1 arcsec (or equivalently 0.5 kpc proper), while at brighter magnitudes high-z galaxies are typically larger than ~0.15 arcsec. We also find a well defined size-luminosity relation, RhsimL^1/2. We compute the Luminosity Function in the HUDF and P12HUDF fields, finding large spatial variation on the number density of faint galaxies. Adopting the size distribution and the size-luminosity relation found for faint galaxies at z=7, we derive a mean slope of -1.7pm0.1 for the luminosity function of LBGs at this redshift. Using this LF, we find that the amount of ionizing photons cannot keep the Universe re-ionized if the IGM is clumpy (C_HII>3) and the Lyman continuum escape fraction of high-z LBGs is relatively low (f_esc<0.3). With future CANDELS data, we can put severe limits to the role of galaxies in the reionization of the Universe.