No Arabic abstract
The exploration of the relation between galaxy sizes and other physical parameters has provided important clues for understanding galaxy formation. We use the CANDELS Deep+Wide surveys in the GOODS-South, UDS and EGS fields, complemented by data from the HUDF09 program, to address the relation between size and luminosity at zsim7. We select 153 z-band drop-out galaxies in six different fields characterized by a wide combination of depth and areal coverage, ideally suited to sample without biases the observed size-magnitude plane. Detailed simulations allow us to derive the completeness as a function of size and magnitude and to quantify measurements errors/biases. We find that the half light radius distribution function of zsim7 galaxies fainter than J=26.6 is peaked at <0.1 arcsec (or equivalently 0.5 kpc proper), while at brighter magnitudes high-z galaxies are typically larger than ~0.15 arcsec. We also find a well defined size-luminosity relation, RhsimL^1/2. We compute the Luminosity Function in the HUDF and P12HUDF fields, finding large spatial variation on the number density of faint galaxies. Adopting the size distribution and the size-luminosity relation found for faint galaxies at z=7, we derive a mean slope of -1.7pm0.1 for the luminosity function of LBGs at this redshift. Using this LF, we find that the amount of ionizing photons cannot keep the Universe re-ionized if the IGM is clumpy (C_HII>3) and the Lyman continuum escape fraction of high-z LBGs is relatively low (f_esc<0.3). With future CANDELS data, we can put severe limits to the role of galaxies in the reionization of the Universe.
For the first time, we study the evolution of the stellar mass-size relation for star-forming galaxies from z ~ 4 to z ~ 7 from Hubble-WFC3/IR camera observations of the HUDF and Early Release Science (ERS) field. The sizes are measured by determining the best fit model to galaxy images in the rest-frame 2100 AA with the stellar masses estimated from SED fitting to rest-frame optical (from Spitzer/IRAC) and UV fluxes. We show that the stellar mass-size relation of Lyman-break galaxies (LBGs) persists, at least to z ~ 5, and the median size of LBGs at a given stellar mass increases towards lower redshifts. For galaxies with stellar masses of 9.5<Log(M*/Msun)<10.4 sizes evolve as $(1+z)^{-1.20pm0.11}$. This evolution is very similar for galaxies with lower stellar masses of 8.6<Log(M*/Msun)<9.5 which is $r_{e} propto (1+z)^{-1.18pm0.10}$, in agreement with simple theoretical galaxy formation models at high z. Our results are consistent with previous measurements of the LBGs mass-size relation at lower redshifts (z ~ 1-3).
We quantify the systematics in the size-luminosity relation of galaxies in the SDSS main sample which arise from fitting different 1- and 2-component model profiles to the images. In objects brighter than L*, fitting a single Sersic profile to what is really a two-component SerExp system leads to biases: the half-light radius is increasingly overestimated as n of the fitted single component increases; it is also overestimated at B/T ~ 0.6. However, the net effect on the R-L relation is small, except for the most luminous tail, where it curves upwards towards larger sizes. We also study how this relation depends on morphological type. Our analysis is one of the first to use Bayesian-classifier derived weights, rather than hard cuts, to define morphology. Crudely, there appear to be only two relations: one for early-types (Es, S0s and Sas) and another for late-types (Sbs and Scds). However, closer inspection shows that within the early-type sample S0s tend to be 15% smaller than Es of the same luminosity, and, among faint late types, Sbs are more than 25% smaller than Scds. Neither the early- nor the late-type relations are pure power-laws: both show significant curvature, which we quantify. However, the R-L relations of the bulges of early-types are almost pure power laws. Our analysis confirms that two mass scales are special for early-type galaxies: M* = 3e10 and 2e11 Msun. These same mass scales are also special for late types: there is almost no correlation between R and M* below the former, and almost no late-types above the latter. We also show that the intrinsic scatter around the relation decreases at large luminosity and/or stellar mass; this should provide additional constraints on models of how the most massive galaxies formed.
The evolution of the properties of the hot gas that fills the potential well of galaxy clusters is poorly known, since models are unable to give robust predictions and observations lack a sufficient redshift leverage and are affected by selection effects. Here, with just two high redshift, z approx 1.8, clusters avoiding selection biases, we obtain a significant extension of the redshift range and we begin to constrain the possible evolution of the X-ray luminosity vs temperature relation. The two clusters, JKC041 at z=2.2 and ISCSJ1438+3414 at z=1.41, are respectively the most distant cluster overall, and the second most distant that can be used for studying scaling relations. Their location in the X-ray luminosity vs temperature plane, with an X-ray luminosity 5 times lower than expected, suggests at the 95 % confidence that the evolution of the intracluster medium has not been self-similar in the last three quarters of the Universe age. Our conclusion is reinforced by data on a third, X-ray selected, high redshift cluster, too faint for its temperature when compared to a sample of similarly selected objects. Our data suggest that non-gravitational effects, such as the baryon physics, influence the evolution of galaxy cluster. Precise knowledge of evolution is central for using galaxy clusters as cosmological probes in planned X-ray surveys such as WFXT or JDEM.
Interferometric measurements in the mid-infrared have shown that the sizes of the warm dust distributions in active galactic nuclei are consistent with their scaling with the square root of their luminosity. We carry out a more detailed analysis of this size-luminosity relation to investigate which of the general properties of the dusty tori in active galactic nuclei can be derived from this relation. We improve the accuracy of the size-luminosity relation by adding a few additional size measurements from more recent interferometric observations and compare the measured sizes to those derived from hydrodynamical and radiative transfer models of AGN tori. We find that a Gaussian approximation yields a reasonable estimate of the size of the brightness distribution, as long as the visibilities are within 0.2 {leg} V {leg} 0.9. The size estimates derived from the models are consistent with those determined from the measurements. However, the models predict a significant offset between the sizes derived for face-on and edge-on tori. This offset is not observed in the current data, probably because of the large uncertainties and low statistics of the present interferometric measurements. Furthermore, we find a ratio of the mid- to near-infrared sizes of approximately 30, whereas the first probes the body of the torus and the second is an estimate of the inner rim. The size-luminosity relation of AGN tori using Gaussian size estimates is a very simple and effective tool to investigate the internal structure and geometry of AGN tori and obtain constraints on the differences between type 1 and type 2 AGN. However, to fully exploit the possibilities of investigating the nuclear distributions of gas and dust in AGN using this size-luminosity relation, more accurate interferometric measurements of a larger sample of AGN are needed.
In this paper, we provide updated constraints on the bolometric quasar luminosity function (QLF) from $z=0$ to $z=7$. The constraints are based on an observational compilation that includes observations in the rest-frame IR, B band, UV, soft and hard X-ray in past decades. Our method follows Hopkins et al. 2007 with an updated quasar SED model and bolometric and extinction corrections. The new best-fit bolometric quasar luminosity function behaves qualitatively different from the Hopkins et al. 2007 model at high redshift. Compared with the old model, the number density normalization decreases towards higher redshift and the bright-end slope is steeper at $zgtrsim 2$. Due to the paucity of measurements at the faint end, the faint end slope at $zgtrsim 5$ is quite uncertain. We present two models, one featuring a progressively steeper faint-end slope at higher redshift and the other featuring a shallow faint-end slope at $zgtrsim 5$. Further multi-band observations of the faint-end QLF are needed to distinguish between these models. The evolutionary pattern of the bolometric QLF can be interpreted as an early phase likely dominated by the hierarchical assembly of structures and a late phase likely dominated by the quenching of galaxies. We explore the implications of this model on the ionizing photon production by quasars, the CXB spectrum, the SMBH mass density and mass functions. The predicted hydrogen photoionization rate contributed by quasars is subdominant during the epoch of reionization and only becomes important at $zlesssim 3$. The predicted CXB spectrum, cosmic SMBH mass density and SMBH mass function are generally consistent with existing observations.