No Arabic abstract
We present an analysis of the impact of structural disorder on the static scattering function of f-armed star branched polymers in d dimensions. To this end, we consider the model of a star polymer immersed in a good solvent in the presence of structural defects, correlated at large distances r according to a power law sim r^{-a}. In particular, we are interested in the ratio g(f) of the radii of gyration of star and linear polymers of the same molecular weight, which is a universal experimentally measurable quantity. We apply a direct polymer renormalization approach and evaluate the results within the double varepsilon=4-d, delta=4-a-expansion. We find an increase of g(f) with an increasing delta. Therefore, an increase of disorder correlations leads to an increase of the size measure of a star relative to linear polymers of the same molecular weight.
The response to a localized force provides a sensitive test for different models of stress transmission in granular solids. The elasto-plastic models traditionally used by engineers have been challenged by theoretical and experimental results which suggest a wave-like (hyperbolic) propagation of the stress, as opposed to the elliptic equations of static elasticity. Numerical simulations of two-dimensional granular systems subject to a localized external force are employed to examine the nature of stress transmission in these systems as a function of the magnitude of the applied force, the frictional parameters and the disorder (polydispersity). The results indicate that in large systems (typically considered by engineers), the response is close to that predicted by isotropic elasticity whereas the response of small systems (or when sufficiently large forces are applied) is strongly anisotropic. In the latter case the applied force induces changes in the contact network accompanied by frictional sliding. The larger the coefficient of static friction, the more extended is the range of forces for which the response is elastic and the smaller the anisotropy. Increasing the degree of polydispersity (for the range studied, up to 25%) decreases the range of elastic response. This article is an extension of a previously published letter [1].
We calculate the scattering intensity of dilute and semi-dilute solutions of star polymers. The star conformation is described by a model introduced by Daoud and Cotton. In this model, a single star is regarded as a spherical region of a semi-dilute polymer solution with a local, position dependent screening length. For high enough concentrations, the outer sections of the arms overlap and build a semi-dilute solution (a sea of blobs) where the inner parts of the actual stars are embedded. The scattering function is evaluated following a method introduced by Auvray and de Gennes. In the dilute regime there are three regions in the scattering function: the Guinier region (low wave vectors, q R << 1) from where the radius of the star can be extracted; the intermediate region (1 << q R << f^(2/5)) that carries the signature of the form factor of a star with f arms: I(q) ~ q^(-10/3); and a high wavevector zone (q R >> f^(2/5)) where the local swollen structure of the polymers gives rise to the usual q^(-5/3) decay. In the semi-dilute regime the different stars interact strongly, and the scattered intensity acquires two new features: a liquid peak that develops at a reciprocal position corresponding to the star-star distances; and a new large wavevector contribution of the form q^(-5/3) originating from the sea of blobs.
We consider the Larkin model of a directed polymer with Gaussian-distributed random forces, with the addition of a resetting process whereby the transverse position of the end-point of the polymer is reset to zero with constant rate $r$. We express the average over disorder of the mean time to absorption by an absorbing target at a fixed value of the transverse position. Thanks to the independence properties of the distribution of the random forces, this expression is analogous to the mean time to absorption for a diffusive particle under resetting, which possesses a single minimum at an optimal value $r^ast$ of the resetting rate . Moreover, the mean time to absorption can be expanded as a power series of the amplitude of the disorder, around the value $r^ast$ of the resetting rate. We obtain the susceptibility of the optimal resetting rate to disorder in closed form, and find it to be positive.
We study by simulation and theory how the addition of insulating spherical particles affects the conductivity of fluids of conducting rods, modeled by spherocylinders. The electrical connections are implemented as tunneling processes, leading to a more detailed and realistic description than a discontinuous percolation approach. We find that the spheres enhance the tunneling conductivity for a given concentration of rods and that the enhancement increases with rod concentration into the regime where the conducting network is well established. By reformulating the network of rods using a critical path analysis, we quantify the effect of depletion-induced attraction between the rods due to the spheres. Furthermore, we show that our conductivity data are quantitatively reproduced by an effective medium approximation, which explicitly relates the system tunneling conductance to the structure of the rod-sphere fluid.
Extensive Monte Carlo results are presented for a lattice model of a bottle-brush polymer under good solvent or Theta solvent conditions. Varying the side chain length, backbone length, and the grafting density for a rigid straight backbone, both radial density profiles of monomers and side chain ends are obtained, as well as structure factors describing the scattering from a single side chain and from the total bottle-brush polymer. To describe the structure in the interior of a very long bottle-brush, a periodic boundary condition in the direction along the backbone is used, and to describe effects due to the finiteness of the backbone length, a second set of simulations with free ends of the backbone is performed. In the latter case, the inhomogeneity of the structure in the direction along the backbone is carefully investigated. We use these results to test various phenomenological models that have been proposed to interpret experimental scattering data for bottle-brush macromolecules. These models aim to extract information on the radial density profile of a bottle-brush from the total scattering via suitable convolution approximations. Possibilities to improve such models, guided by our simulation results, are discussed.