Do you want to publish a course? Click here

MAGIC observations of the giant radio galaxy M87 in a low-emission state between 2005 and 2007

182   0   0.0 ( 0 )
 Added by Karsten Berger
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of a long M87 monitoring campaign in very high energy $gamma$-rays with the MAGIC-I Cherenkov telescope. We aim to model the persistent non-thermal jet emission by monitoring and characterizing the very high energy $gamma$-ray emission of M87 during a low state. A total of 150,h of data were taken between 2005 and 2007 with the single MAGIC-I telescope, out of which 128.6,h survived the data quality selection. We also collected data in the X-ray and textit{Fermi}--LAT bands from the literature (partially contemporaneous). No flaring activity was found during the campaign. The source was found to be in a persistent low-emission state, which was at a confidence level of $7sigma$. We present the spectrum between 100,GeV and 2,TeV, which is consistent with a simple power law with a photon index $Gamma=2.21pm0.21$ and a flux normalization at 300,GeV of $(7.7pm1.3) times 10^{-8}$ TeV$^{-1}$ s$^{-1}$ m$^{-2}$. The extrapolation of the MAGIC spectrum into the GeV energy range matches the previously published textit{Fermi}--LAT spectrum well, covering a combined energy range of four orders of magnitude with the same spectral index. We model the broad band energy spectrum with a spine layer model, which can satisfactorily describe our data.



rate research

Read More

144 - Karsten Berger 2011
We present the results of a long M87 monitoring campaign in very high energy $gamma$-rays with the MAGIC-I Cherenkov telescope. A total of 150 hours of data was gathered between 2005 and 2007. No flaring activity was found during that time. Nevertheless, we have found an apparently steady and weak signal at the level of $7sigma$. We present the spectrum between 100 GeV and 2 TeV, which is consistent with a simple power law with a spectral index $-2.21pm0.21$ and a flux normalization (at 300 GeV) of $5.4pm1.1 times 10^{-8} frac{1}{mathrm{TeV s m}^{2}}$. It complements well with the previously published Fermi spectrum, covering an energy range of four orders of magnitude without apparent change in the spectral index.
M87 is one of the closest (z=0.00436) extragalactic sources emitting at very-high-energies (VHE, E > 100 GeV). The aim of this work is to locate the region of the VHE gamma-ray emission and to describe the observed broadband spectral energy distribution (SED) during the low VHE gamma-ray state. The data from M87 collected between 2012 and 2015 as part of a MAGIC monitoring programme are analysed and combined with multi-wavelength data from Fermi-LAT, Chandra, HST, EVN, VLBA and the Liverpool Telescope. The averaged VHE gamma-ray spectrum can be fitted from 100GeV to 10TeV with a simple power law with a photon index of (-2.41 $pm$ 0.07), while the integral flux above 300GeV is $(1.44 pm 0.13) times 10^{-12} cm^{-2} s^{-1}$. During the campaign between 2012 and 2015, M87 is generally found in a low emission state at all observed wavelengths. The VHE gamma-ray flux from the present 2012-2015 M87 campaign is consistent with a constant flux with some hint of variability ($sim3sigma$) on a daily timescale in 2013. The low-state gamma-ray emission likely originates from the same region as the flare-state emission. Given the broadband SED, both a leptonic synchrotron self Compton and a hybrid photo-hadronic model reproduce the available data well, even if the latter is preferred. We note, however, that the energy stored in the magnetic field in the leptonic scenario is very low suggesting a matter dominated emission region.
The flat-spectrum radio-quasar 3C279 (z=0.536) is the most distant object detected at very high energy (VHE) gamma-rays. It is thus an important beacon for the study of the interaction of the VHE gamma-rays with the Extra-galactic Background Light (EBL). Previous observations by EGRET showed a highly variable flux that can differ up to a factor of 100. In this paper results from an observation campaign with the MAGIC telescope during an optical flare in January 2007 will be presented and previous MAGIC results from 2006 will be summarized.
Cosmological simulations predict that an intergalactic magnetic field (IGMF) pervades the large scale structure (LSS) of the Universe. Measuring the IGMF is important to determine its origin (i.e. primordial or otherwise). Using data from the LOFAR Two Metre Sky Survey (LoTSS), we present the Faraday rotation measure (RM) and depolarisation properties of the giant radio galaxy J1235+5317, at a redshift of $z = 0.34$ and 3.38 Mpc in size. We find a mean RM difference between the lobes of $2.5pm0.1$ rad/m$^2$ , in addition to small scale RM variations of ~0.1 rad/m$^2$ . From a catalogue of LSS filaments based on optical spectroscopic observations in the local universe, we find an excess of filaments intersecting the line of sight to only one of the lobes. Associating the entire RM difference to these LSS filaments leads to a gas density-weighted IGMF strength of ~0.3 {mu}G. However, direct comparison with cosmological simulations of the RM contribution from LSS filaments gives a low probability (~5%) for an RM contribution as large as 2.5 rad/m$^2$ , for the case of IGMF strengths of 10 to 50 nG. It is likely that variations in the RM from the Milky Way (on 11 scales) contribute significantly to the mean RM difference, and a denser RM grid is required to better constrain this contribution. In general, this work demonstrates the potential of the LOFAR telescope to probe the weak signature of the IGMF. Future studies, with thousands of sources with high accuracy RMs from LoTSS, will enable more stringent constraints on the nature of the IGMF.
We report on follow-up observations of 20 short-duration gamma-ray bursts performed in grizJHKs with the seven-channel imager GROND between mid-2007 and the end of 2010. This is one of the most comprehensive data sets on GRB afterglow observations of short bursts published so far. In three cases GROND was on target within less than 10 min after the trigger, leading to the discovery of the afterglow of GRB 081226A and its faint underlying host galaxy. In addition, GROND was able to image the optical afterglow and follow the light-curve evolution in further five cases, GRBs 090305, 090426, 090510, 090927, and 100117A. In all other cases optical/NIR upper limits can be provided on the afterglow magnitudes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا