Do you want to publish a course? Click here

High-Tc Nodeless s_pm-wave Superconductivity in (Y,La)FeAsO_{1-y} with Tc=50 K: 75As-NMR Study

199   0   0.0 ( 0 )
 Added by Hidekazu Mukuda
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report 75As-NMR study on the Fe-pnictide high-Tc superconductor Y0.95La0.05FeAsO_{1-y} (Y0.95La0.051111) with Tc=50 K that includes no magnetic rare-earth elements. The measurement of the nuclear-spin lattice-relaxation rate 75(1/T1) has revealed that the nodeless bulk superconductivity takes place at Tc=50 K while antiferromagnetic spin fluctuations (AFSFs) develop moderately in the normal state. These features are consistently described by the multiple fully-gapped s_pm-wave model based on the Fermi-surface (FS) nesting. Incorporating the theory based on band calculations, we propose that the reason that Tc=50 K in Y0.95La0.051111 is larger than Tc=28 K in La1111 is that the FS multiplicity is maximized, and hence the FS nesting condition is better than that in La1111.



rate research

Read More

Following a recent proposal by Burrard-Lucas et al. [unpublished, arXiv: 1203.5046] we intercalated FeSe by Li in liquid ammonia. We report on the synthesis of new LixFe2Se2(NH3)y phases as well as on their magnetic and superconducting properties. We suggest that the superconducting properties of these new hybride materials appear not to be influenced by the presence of electronically-innocent Li(NH2) salt moieties. Indeed, high onset temperatures of 44 K and shielding fractions of almost 80% were only obtained in samples containing exclusively Lix(NH3)y moieties acting simultaneously as electron donors and spacer units. The c-axis of the new intercalated phases is strongly enhanced when compared to the alkali-metal intercalated iron selenides A1-xFe2-ySe2 with A = K, Rb, Cs, Tl with T c = 32 K.
We report 75As-nuclear quadrupole resonance (NQR) studies on (Ca_4Al_2O_{6-y})(Fe_2As_2) with Tc=27K, which unravel unique normal-state properties and point to unconventional nodeless superconductivity (SC). Measurement of nuclear-spin-relaxation rate 1/T_1 has revealed a significant development of two dimensional (2D) antiferromagnetic (AFM) spin fluctuations down to Tc, in association with the fact that FeAs layers with the smallest As-Fe-As bond angle are well separated by thick perovskite-type blocking layer. Below Tc, the temperature dependence of 1/T_1 without any trace of the coherence peak is well accounted for by an s(+-)-wave multiple gaps model. From the fact that Tc=27K in this compound is comparable to Tc=28K in the optimally-doped LaFeAsO_{1-y} in which AFM spin fluctuations are not dominant, we remark that AFM spin fluctuations are not a unique factor for enhancing Tc among existing Fe-based superconductors, but a condition for optimizing SC should be addressed from the lattice structure point of view.
We report 75As-NQR/NMR studies on the oxygen-deficient iron(Fe)-based oxypnictide superconductors LaFeAsO_{0.6} (T_c=28 K) along with the results on LaFeAsO, LaFeAsO_{0.75}(T_c=20 K) and NdFeAsO_{0.6}(T_c=53 K). Nuclear spin-lattice relaxation rate 1/T_1 of 75As NQR at zero field on LaFeAsO_{0.6} has revealed a T^3 dependence below T_c upon cooling without the coherence peak just below T_c, evidencing the unconventional superconducting state with the line-node gap. We have found an intimate relationship between the nuclear quadrupole frequencyof 75As and T_c for four samples used in this study. It implies microscopically that the local configuration of Fe and As atoms is significantly related to the T_c of the Fe-oxypnictide superconductors, namely, the T_c can be enhanced up to 50 K when the local configuration of Fe and As atoms is optimal, in which the band structure may be also optimized through the variation of hybridization between As 4p orbitals and Fe 3d orbitals.
We demonstrate that the anisotropy R of the paramagnetic spin fluctuations grows toward Tc at 75As sites in the optimally electron-doped superconductor Ba[(Fe0.92Co0.08)2]2As2, with stronger spin fluctuations along the c-axis. Our finding is in remarkable contrast with the case of high T$_c$ cuprates, where R is independent of temperature above Tc.
The superconducting transition temperatures of high-Tc compounds based on copper, iron, ruthenium and certain organic molecules are discovered to be dependent on bond lengths, ionic valences, and Coulomb coupling between electronic bands in adjacent, spatially separated layers [1]. Optimal transition temperature, denoted as T_c0, is given by the universal expression $k_BT_c0 = e^2 Lambda / ellzeta$; $ell$ is the spacing between interacting charges within the layers, zeta is the distance between interacting layers and Lambda is a universal constant, equal to about twice the reduced electron Compton wavelength (suggesting that Compton scattering plays a role in pairing). Non-optimum compounds in which sample degradation is evident typically exhibit Tc < T_c0. For the 31+ optimum compounds tested, the theoretical and experimental T_c0 agree statistically to within +/- 1.4 K. The elemental high Tc building block comprises two adjacent and spatially separated charge layers; the factor e^2/zeta arises from Coulomb forces between them. The theoretical charge structure representing a room-temperature superconductor is also presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا