We have recently defined a weak Markovian bisimulation equivalence in an integrated-time setting, which reduces sequences of exponentially timed internal actions to individual exponentially timed internal actions having the same average duration and execution probability as the corresponding sequences. This weak Markovian bisimulation equivalence is a congruence for sequential processes with abstraction and turns out to induce an exact CTMC-level aggregation at steady state for all the considered processes. However, it is not a congruence with respect to parallel composition. In this paper, we show how to generalize the equivalence in a way that a reasonable tradeoff among abstraction, compositionality, and exactness is achieved for concurrent processes. We will see that, by enhancing the abstraction capability in the presence of concurrent computations, it is possible to retrieve the congruence property with respect to parallel composition, with the resulting CTMC-level aggregation being exact at steady state only for a certain subset of the considered processes.