Do you want to publish a course? Click here

RHIC and LHC phenomena with an unified parton transport

356   0   0.0 ( 0 )
 Added by Ioannis Bouras
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We discuss recent applications of the partonic pQCD based cascade model BAMPS with focus on heavy-ion phenomeneology in hard and soft momentum range. The nuclear modification factor as well as elliptic flow are calculated in BAMPS for RHIC end LHC energies. These observables are also discussed within the same framework for charm and bottom quarks. Contributing to the recent jet-quenching investigations we present first preliminary results on application of jet reconstruction algorithms in BAMPS. Finally, collective effects induced by jets are investigated: we demonstrate the development of Mach cones in ideal matter as well in the highly viscous regime.



rate research

Read More

111 - Andrea Dainese 2008
The phenomenology of gluon saturation at small parton momentum fraction, Bjorken-x, in the proton and in the nucleus is introduced. The experimentally-accessible kinematic domains at the nucleus-nucleus colliders RHIC and LHC are discussed. Finally, the saturation hints emerging from measurements at RHIC and the perspectives for LHC are described.
197 - I. Bouras , A. El , O. Fochler 2010
Quenching of gluonic jets and heavy quark production in Au+Au collisions at RHIC can be understood within the pQCD based 3+1 dimensional parton transport model BAMPS including pQCD bremsstrahlung $2 leftrightarrow 3$ processes. Furthermore, the development of conical structures induced by gluonic jets is investigated in a static box for the regimes of small and large dissipation.
133 - I. Bouras , A. El , O. Fochler 2011
Fast thermalization and a strong build up of elliptic flow of QCD matter were investigated within the pQCD based 3+1 dimensional parton transport model BAMPS including bremsstrahlung $2 leftrightarrow 3$ processes. Within the same framework quenching of gluonic jets in Au+Au collisions at RHIC can be understood. The development of conical structure by gluonic jets is investigated in a static box for the regimes of small and large dissipation. Furthermore we demonstrate two different approaches to extract the shear viscosity coefficient $eta$ from a microscopical picture.
We present an improved leading-order global DGLAP analysis of nuclear parton distribution functions (nPDFs), supplementing the traditionally used data from deep inelastic lepton-nucleus scattering and Drell-Yan dilepton production in proton-nucleus collisions, with inclusive high-$p_T$ hadron production data measured at RHIC in d+Au collisions. With the help of an extended definition of the $chi^2$ function, we now can more efficiently exploit the constraints the different data sets offer, for gluon shadowing in particular, and account for the overall data normalization uncertainties during the automated $chi^2$ minimization. The very good simultaneous fit to the nuclear hard process data used demonstrates the feasibility of a universal set of nPDFs, but also limitations become visible. The high-$p_T$ forward-rapidity hadron data of BRAHMS add a new crucial constraint into the analysis by offering a direct probe for the nuclear gluon distributions -- a sector in the nPDFs which has traditionally been very badly constrained. We obtain a strikingly stronger gluon shadowing than what has been estimated in previous global analyses. The obtained nPDFs are released as a parametrization called EPS08.
The interpretation of experimental results at RHIC and in the future also at LHC requires very reliable and realistic models. Considerable effort has been devoted to the development of such models during the past decade, many of them being heavily used in order to analyze data. It is the purpose of this paper to point out serious inconsistencies in the above-mentioned approaches. We will demonstrate that requiring theoretical self-consistency reduces the freedom in modeling high energy nuclear scattering enormously. We will introduce a fully self-consistent formulation of the multiple-scattering scheme in the framework of a Gribov-Regge type effective theory. In addition, we develop new computational techniques which allow for the first time a satisfactory solution of the problem in the sense that calculations of observable quantities can be done strictly within a self-consistent formalism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا