Do you want to publish a course? Click here

Development of a multifunction module for the neutron electric dipole moment experiment at PSI

123   0   0.0 ( 0 )
 Added by Olivier Bourrion
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Experiments aiming at measuring the neutron electric dipole moment (nEDM) are at the forefront of precision measurements and demand instrumentation of increasing sensitivity and reliability. In this paper, we report on the development of a dedicated acquisition and control electronics board for the nEDM experiment at the Paul Scherrer Institute (PSI) in Switzerland. This multifunction module is based on a FPGA (Field-programmable gate array) which allows an optimal combination of versatility and evolution capacities.



rate research

Read More

We present results from a first demonstration of a magnetic field monitoring system for a neutron electric dipole moment experiment. The system is designed to reconstruct the vector components of the magnetic field in the interior measurement region solely from exterior measurements.
The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was $184(32)$ UCN/cm$^3$, a four-fold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be $39(7)$ UCN/cm$^3$, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of $sigma(d_n) = 3times 10^{-27}$ $ecdot$cm.
313 - C. Abel , N. J. Ayres , G. Ban 2021
Experiments dedicated to the measurement of the electric dipole moment of the neutron require outstanding control of the magnetic field uniformity. The neutron electric dipole moment (nEDM) experiment at the Paul Scherrer Institute uses a 199Hg co-magnetometer to precisely monitor magnetic field variations. This co-magnetometer, in the presence of field non-uniformity, is responsible for the largest systematic effect of this measurement. To evaluate and correct that effect, offline measurements of the field non-uniformity were performed during mapping campaigns in 2013, 2014 and 2017. We present the results of these campaigns, and the improvement the correction of this effect brings to the neutron electric dipole moment measurement.
A cryogenic apparatus is described that enables a new experiment, nEDM@SNS, with a major improvement in sensitivity compared to the existing limit in the search for a neutron Electric Dipole Moment (EDM). It uses superfluid $^4$He to produce a high density of Ultra-Cold Neutrons (UCN) which are contained in a suitably coated pair of measurement cells. The experiment, to be operated at the Spallation Neutron Source at Oak Ridge National Laboratory, uses polarized $^3$He from an Atomic Beam Source injected into the superfluid $^4$He and transported to the measurement cells as a co-magnetometer. The superfluid $^4$He is also used as an insulating medium allowing significantly higher electric fields, compared to previous experiments, to be maintained across the measurement cells. These features provide an ultimate statistical uncertainty for the EDM of $2-3times 10^{-28}$ e-cm, with anticipated systematic uncertainties below this level.
Novel experimental techniques are required to make the next big leap in neutron electric dipole moment experimental sensitivity, both in terms of statistics and systematic error control. The nEDM experiment at the Spallation Neutron Source (nEDM@SNS) will implement the scheme of Golub & Lamoreaux [Phys. Rep., 237, 1 (1994)]. The unique properties of combining polarized ultracold neutrons, polarized $^3$He, and superfluid $^4$He will be exploited to provide a sensitivity to $sim 10^{-28},e{rm ,cdot, cm}$. Our cryogenic apparatus will deploy two small ($3,{rm L}$) measurement cells with a high density of ultracold neutrons produced and spin analyzed in situ. The electric field strength, precession time, magnetic shielding, and detected UCN number will all be enhanced compared to previous room temperature Ramsey measurements. Our $^3$He co-magnetometer offers unique control of systematic effects, in particular the Bloch-Siegert induced false EDM. Furthermore, there will be two distinct measurement modes: free precession and dressed spin. This will provide an important self-check of our results. Following five years of critical component demonstration, our collaboration transitioned to a large scale integration phase in 2018. An overview of our measurement techniques, experimental design, and brief updates are described in these proceedings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا