Do you want to publish a course? Click here

Gravitational microlensing of AGN dusty tori

310   0   0.0 ( 0 )
 Added by Marko Stalevski
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated the gravitational microlensing of active galactic nucleus dusty tori in the case of lensed quasars in the infrared domain. The dusty torus is modeled as a clumpy two-phase medium. To obtain spectral energy distributions and images of tori at different wavelengths, we used the 3D Monte Carlo radiative transfer code SKIRT. A ray-shooting technique has been used to calculate microlensing magnification maps. We simulated microlensing by the stars in the lens galaxy for different configurations of the lensed system and different values of the torus parameters, in order to estimate (a) amplitudes and timescales of high magnification events, and (b) the influence of geometrical and physical properties of dusty tori on light curves in the infrared domain. We found that, despite their large size, dusty tori could be significantly affected by microlensing in some cases, especially in the near-infrared domain (rest-frame). The very long time-scales of such events, in the range from several decades to hundreds of years, are limiting the practical use of this method to study the properties of dusty tori. However, our results indicate that, when studying flux ratios between the images in different wavebands of lensed quasars, one should not disregard the possibility that the near and mid-infrared flux ratios could be under the influence of microlensing.



rate research

Read More

Warm gas and dust surround the innermost regions of active galactic nuclei (AGN). They provide the material for accretion onto the super-massive black hole and they are held responsible for the orientation-dependent obscuration of the central engine. The AGN-heated dust distributions turn out to be very compact with sizes on scales of about a parsec in the mid-infrared. Only infrared interferometry currently provides the necessary angular resolution to directly study the physical properties of this dust. Size estimates for the dust distributions derived from interferometric observations can be used to construct a size--luminosity relation for the dust distributions. The large scatter about this relation suggests significant differences between the dust tori in the individual galaxies, even for nuclei of the same class of objects and with similar luminosities. This questions the simple picture of the same dusty doughnut in all AGN. The Circinus galaxy is the closest Seyfert 2 galaxy. Because its mid-infrared emission is well resolved interferometrically, it is a prime target for detailed studies of its nuclear dust distribution. An extensive new interferometric data set was obtained for this galaxy. It shows that the dust emission comes from a very dense, disk-like structure which is surrounded by a geometrically thick, similarly warm dust distribution as well as significant amounts of warm dust within the ionisation cone.
According to unified schemes of Active Galactic Nuclei (AGN), the central engine is surrounded by dusty, optically thick clouds in a toroidal structure. We have recently developed a formalism that for the first time takes proper account of the clumpy nature of the AGN torus. We now provide a detailed report of our findings in a two-paper series. Here we present our general formalism for radiative transfer in clumpy media and construct its building blocks for the AGN problem -- the source functions of individual dusty clouds heated by the AGN radiation field. We show that a fundamental difference from smooth density distributions is that in a clumpy medium, a large range of dust temperatures coexist at the same distance from the radiation central source. This distinct property explains the low dust temperatures found close to the nucleus of NGC1068 in 10 mic interferometric observations. We find that irrespective of the overall geometry, a clumpy dust distribution shows only moderate variation in its spectral energy distribution, and the 10mic absorption feature is never deep. Furthermore, the X-ray attenuating column density is widely scattered around the column density that characterizes the IR emission. All of these properties are characteristic of AGN observations. The assembly of clouds into AGN tori and comparison with observations is presented in the companion paper.
From extensive radiative transfer calculations we find that clumpy torus models with No about 5--15 dusty clouds along radial equatorial rays successfully explain AGN infrared observations. The dust has standard Galactic composition, with individual cloud optical depth tV about 30--100 at visual. The models naturally explain the observed behavior of the 10mic silicate feature, in particular the lack of deep absorption features in AGN of any type. The weak 10mic emission feature tentatively detected in type 2 QSO can be reproduced if in these sources No drops to about 2 or tV exceeds about 100. The clouds angular distribution must have a soft-edge, e.g., Gaussian profile, the radial distribution should decrease as $1/r$ or $1/r^2$. Compact tori can explain all observations, in agreement with the recent interferometric evidence that the ratio of the torus outer to inner radius is perhaps as small as about 5--10. Clumpy torus models can produce nearly isotropic IR emission together with highly anisotropic obscuration, as required by observations. In contrast with strict variants of unification schemes where the viewing-angle uniquely determines the classification of an AGN into type 1 or 2, clumpiness implies that it is only a probabilistic effect; a source can display type 1 properties even from directions close to the equatorial plane. The fraction of obscured sources depends not only on the torus angular thickness but also on the cloud number No. The observed decrease of this fraction at increasing luminosity can be explained with a decrease of either torus angular thickness or cloud number, but only the latter option explains also the possible emergence of a 10mic emission feature in QSO2.
The AGN-heated dust distribution (the torus) is increasingly recognized not only as the absorber required in unifying models, but as a tracer for the reservoir that feeds the nuclear Super-Massive Black Hole. Yet, even its most basic structural properties (such as its extent, geometry and elongation) are unknown for all but a few archetypal objects. Since most AGNs are unresolved in the mid-infrared, we utilize the MID-infrared interferometric Instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) that is sensitive to structures as small as a few milli-arcseconds (mas). We present here an extensive amount of new interferometric observations from the MIDI AGN Large Program (2009 - 2011) and add data from the archive to give a complete view of the existing MIDI observations of AGNs. Additionally, we have obtained high-quality mid-infrared spectra from VLT/VISIR. We present correlated and total flux spectra for 23 AGNs and derive flux and size estimates at 12 micron using simple axisymmetric geometrical models. Perhaps the most surprising result is the relatively high level of unresolved flux and its large scatter: The median point source fraction is 70 % for type 1 and 47 % for type 2 AGNs meaning that a large part of the flux is concentrated on scales smaller than about 5 mas (0.1 - 10 pc). Among sources observed with similar spatial resolution, it varies from 20 % - 100 %. For 18 of the sources, two nuclear components can be distinguished in the radial fits. While these models provide good fits to all but the brightest sources, significant elongations are detected in eight sources. The half-light radii of the fainter sources are smaller than expected from the size ~ L^0.5 scaling of the bright sources and show a large scatter, especially when compared to the relatively tight size--luminosity relation in the near-infrared.
112 - Makoto Kishimoto 2011
We present mid-IR interferometric observations of 6 type 1 AGNs at multiple baseline lengths of 27--130m, reaching high angular resolutions up to lambda/B~0.02 arcseconds. For two of the targets, we have simultaneous near-IR interferometric measurements as well. The multiple baseline data directly probe the radial distribution of the material on sub-pc scales. Within our sample, which is small but spans over ~2.5 orders of magnitudes in the UV/optical luminosity L of the central engine, the radial distribution clearly and systematically changes with luminosity. First, we show that the brightness distribution at a given mid-IR wavelength seems to be rather well described by a power law, which makes a simple Gaussian or ring size estimation quite inadequate. Here we instead use a half-light radius R_1/2 as a representative size. We then find that the higher luminosity objects become more compact in normalized half-light radii R_1/2 /R_in in the mid-IR, where R_in is the dust sublimation radius empirically given by the L^1/2 fit of the near-IR reverberation radii. This means that, contrary to previous studies, the physical mid-IR emission size (e.g. in pc) is not proportional to L^1/2, but increases with L much more slowly, or in fact, nearly constant at 13 micron. Combining the size information with the total flux specta, we infer that the radial surface density distribution of the heated dust grains changes from a steep ~r^-1 structure in high luminosity objects to a shallower ~r^0 structure in those of lower luminosity. The inward dust temperature distribution does not seem to smoothly reach the sublimation temperature -- on the innermost scale of ~R_in, a relatively low temperature core seems to co-exist with a slightly distinct brightness concentration emitting roughly at the sublimation temperature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا