Do you want to publish a course? Click here

Germanium, Arsenic, and Selenium Abundances in Metal-Poor Stars

164   0   0.0 ( 0 )
 Added by Ian Roederer
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The elements germanium (Ge, Z=32), arsenic (As, Z=33), and selenium (Se, Z=34) span the transition from charged-particle or explosive synthesis of the iron-group elements to neutron-capture synthesis of heavier elements. Among these three elements, only the chemical evolution of germanium has been studied previously. Here we use archive observations made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope and observations from several ground-based facilities to study the chemical enrichment histories of seven stars with metallicities -2.6 < [Fe/H] < -0.4. We perform a standard abundance analysis of germanium, arsenic, selenium, and several other elements produced by neutron-capture reactions. When combined with previous derivations of germanium abundances in metal-poor stars, our sample reveals an increase in the [Ge/Fe] ratios at higher metallicities. This could mark the onset of the weak s-process contribution to germanium. In contrast, the [As/Fe] and [Se/Fe] ratios remain roughly constant. These data do not directly indicate the origin of germanium, arsenic, and selenium at low metallicity, but they suggest that the weak and main components of the s-process are not likely sources.



rate research

Read More

We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to obtain new high-quality spectra covering the 1900 to 2360 Angstrom wavelength range for two metal-poor stars, HD 108317 and HD 128279. We derive abundances of Cu II, Zn II, As I, Se I, Mo II, and Cd II, which have not been detected previously in either star. Abundances derived for Ge I, Te I, Os II, and Pt I confirm those derived from lines at longer wavelengths. We also derive upper limits from the non-detection of W II, Hg II, Pb II, and Bi I. The mean [As/Fe] ratio derived from these two stars and five others in the literature is unchanged over the metallicity range -2.8 < [Fe/H] < -0.6, <[As/Fe]> = +0.28 +/- 0.14 (std. dev. = 0.36 dex). The mean [Se/Fe] ratio derived from these two stars and six others in the literature is also constant, <[Se/Fe]> = +0.16 +/- 0.09 (std. dev. = 0.26 dex). The As and Se abundances are enhanced relative to a simple extrapolation of the iron-peak abundances to higher masses, suggesting that this mass region (75 < A < 82) may be the point at which a different nucleosynthetic mechanism begins to dominate the quasi-equilibrium alpha-rich freezeout of the iron peak. <[CuII/CuI]> = +0.56 +/- 0.23 in HD 108317 and HD 128279, and we infer that lines of Cu I may not be formed in local thermodynamic equilibrium in these stars. The [Zn/Fe], [Mo/Fe], [Cd/Fe], and [Os/Fe] ratios are also derived from neutral and ionized species, and each ratio pair agrees within the mutual uncertainties, which range from 0.15 to 0.52 dex.
211 - Monique Spite 2010
Sulfur is important: the site of its formation is uncertain, and at very low metallicity the trend of [S/Fe] against [Fe/H] is controversial. Below [Fe/H]=-2.0, [S/Fe] remains constant or it decreases with [Fe/H], depending on the author and the multiplet used in the analysis. Moreover, although sulfur is not significantly bound in dust grains in the ISM, it seems to behave differently in DLAs and in old metal-poor stars. We aim to determine precise S abundance in a sample of extremely metal-poor stars taking into account NLTE and 3D effects. NLTE profiles of the lines of the multiplet 1 of SI have been computed using a new model atom for S. We find sulfur in EMP stars to behave like the other alpha-elements, with [S/Fe] remaining approximately constant for [Fe/H]<-3. However, [S/Mg] seems to decrease slightly as a function of [Mg/H]. The overall abundance patterns of O, Na, Mg, Al, S, and K are best matched by the SN model yields by Heger & Woosley. The [S/Zn] ratio in EMP stars is solar, as found also in DLAs. We obtain an upper limit on the abundance of sulfur, [S/Fe] < +0.5, for the ultra metal-poor star CS 22949-037. This, along with a previous reported measurement of zinc, argues against the conjecture that the light-element abundances pattern in this star, and, by analogy, the hyper metal-poor stars HE 0107-5240 and HE 1327-2326, are due to dust depletion.
Unevolved metal poor stars are the witness of the early evolution of the Galaxy. The determination of their detailed chemical composition is an important tool to understand the chemical history of our Galaxy. The study of their chemical composition can also be used to constrain the nucleosynthesis of the first generation of supernovae that enriched the interstellar medium. The aim is to observe a sample of extremely metal poor stars (EMP stars) candidates selected from SDSS DR12 release and determine their chemical composition. We obtained high resolution spectra of a sample of five stars using HDS on Subaru telescope and used standard 1D models to compute the abundances. The stars we analysed have a metallicity [Fe/H] between -3.50 dex and -4.25 dex . We confirm that the five metal poor candidates selected from low resolution spectra are very metal poor. We present, the discovery of a new ultra metal-poor star (UMP star) with a metallicity of [Fe/H]= -4.25 dex (SDSS~J1050032.34$-$241009.7). We measured in this star an upper limit of lithium ( log(Li/H) <= 2.0. We found that the 4 most metal poor stars of our sample have a lower lithium abundance than the Spite plateau lithium value. We obtain upper limits for carbon in the sample of stars. None of them belong to the high carbon band. We measured abundances of Mg and Ca in most of the stars and found three new alpha-poor stars.
We have obtained new detailed abundances of the Fe-group elements Sc through Zn (Z=21-30) in three very metal-poor ([Fe/H] $approx -3$) stars: BD 03 740, BD -13 3442 and CD -33 1173. High-resolution ultraviolet HST/STIS spectra in the wavelength range 2300-3050AA were gathered, and complemented by an assortment of optical echelle spectra. The analysis featured recent laboratory atomic data for number of neutral and ionized species for all Fe-group elements except Cu and Zn. A detailed examination of scandium, titanium, and vanadium abundances in large-sample spectroscopic surveys indicates that they are positively correlated in stars with [Fe/H]<-$2. The abundances of these elements in BD 03 740, BD -13 3442 and CD -33 1173 and HD 84937. (studied in a previous paper of this series) are in accord with these trends and lie at the high end of the correlations. Six elements have detectable neutral and ionized features, and generally their abundances are in reasonable agreement. For Cr we find only minimal abundance disagreement between the neutral (mean of [Cri/Fe]=+0.01) and ionized species (mean of [Crii/Fe]=+0.08), unlike most studies in the past. The prominent exception is Co, for which the neutral species indicates a significant overabundance (mean of [Co/H]=-2.53), while no such enhancement is seen for the ionized species (mean of [Coii/H]=-2.93). These new stellar abundances, especially the correlations among Sc, Ti, and V, suggest that models of element production in early high-mass metal-poor stars should be revisited.
Reconstructing the chemical evolution of the Milky Way is crucial for understanding the formation of stars, planets, and galaxies throughout cosmic time. Different studies associated with element production in the early universe and how elements are incorporated into gas and stars are necessary to piece together how the elements evolved. These include establishing chemical abundance trends, as set by metal-poor stars, comparing nucleosynthesis yield predictions with stellar abundance data, and theoretical modeling of chemical evolution. To aid these studies, we have collected chemical abundance measurements and other information such as stellar parameters, coordinates, magnitudes, and radial velocities, for extremely metal-poor stars from the literature. The database, JINAbase, contains 1658 unique stars, 60% of which have [Fe/H]<2.5. This information is stored in an SQL database, together with a user-friendly queryable web application (http://jinabase.pythonanywhere.com). Objects with unique chemical element signatures (e.g., r-process stars, s-process and CEMP stars) are labeled or can be classified as such. The web application enables fast selection of customized comparison samples from the literature for the aforementioned studies and many more. Using the multiple entries for three of the most well studied metal-poor stars, we evaluate systematic uncertainties of chemical abundances measurements. We provide a brief guide on the selection of chemical elements for model comparisons for non- spectroscopists who wish to learn about metal-poor stars and the details of chemical abundances measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا