Do you want to publish a course? Click here

Periodic Arrays of M2-Branes

125   0   0.0 ( 0 )
 Added by Paul Richmond
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We consider periodic arrays of M2-branes in the ABJM model in the spirit of a circle compactification to D2-branes in type IIA string theory. The result is a curious formulation of three-dimensional maximally supersymmetric Yang-Mills theory in terms of fermions, seven transverse scalars, a non-dynamical gauge field and an additional scalar `dual gluon. Upon further T-duality on a transverse torus we obtain a non-manifest-Lorentz-invariant description of five-dimensional maximally supersymmetric Yang-Mills. Here the additional scalar field can be thought of as the components of a two-form along the torus. This action can be viewed as an M-theory description of M5-branes on ${mathbb T}^3$.



rate research

Read More

We show that M-theory admits a supersymmetric compactification to the Godel universe of the form Godel3 x S2 x CY3. We interpret this geometry as coming from the backreaction of M2-branes wrapping the S2 in an AdS3 x S2 x CY3 flux compactification. In the black hole deconstruction proposal similar states give rise to the entropy of a D4-D0 black hole. The system is effectively described by a three-dimensional theory consisting of an axion-dilaton coupled to gravity with a negative cosmological constant. Other embeddings of the three-dimensional theory imply similar supersymmetric Godel compactifications of type IIA/IIB string theory and F-theory.
We propose a natural generalisation of the BLG multiple M2-brane action to membranes in curved plane wave backgrounds, and verify in two different ways that the action correctly captures the non-trivial space-time geometry. We show that the M2 to D2 reduction of the theory along a non-trivial direction in field space is equivalent to the D2-brane world-volume Yang-Mills theory with a non-trivial (null-time dependent) dilaton in the corresponding IIA background geometry. As another consistency check of this proposal we show that the properties of metric 3-algebras ensure the equivalence of the Rosen coordinate version of this action (time-dependent metric on the space of 3-algebra valued scalar fields, no mass terms) and its Brinkmann counterpart (constant couplings but time-dependent mass terms). We also establish an analogous result for deformed Yang-Mills theories in any dimension which, in particular, demonstrates the equivalence of the Rosen and Brinkmann forms of the plane wave matrix string action.
Based on the recent proposal of N=8 superconformal gauge theories of the multiple M2 branes, we derive (2+1)-dimensional supersymmetric Janus field theories with a space-time dependent coupling constant. From the original Bagger-Lambert model, we get a supersymmetric field theory with a similar action to the N D2 branes, but the coupling varies with the space-time as a function of the light-cone coordinate, g(t+x). Half of the supersymmetries can be preserved. We further investigate the M2 brane action deformed by mass and Myers-like terms. In this case, the final YM action is deformed by mass and Myers terms and the coupling behaves as exp(mu x) where mu is a constant mass parameter. Weak coupling gauge theory is continuously changed to strong coupling in the large x region.
Motivated by the recent proposal of an N=8 supersymmetric action for multiple M2-branes, we study the Lie 3-algebra in detail. In particular, we focus on the fundamental identity and the relation with Nambu-Poisson bracket. Some new algebras not known in the literature are found. Next we consider cubic matrix representations of Lie 3-algebras. We show how to obtain higher dimensional representations by tensor products for a generic 3-algebra. A criterion of reducibility is presented. We also discuss the application of Lie 3-algebra to the membrane physics, including the Basu-Harvey equation and the Bagger-Lambert model.
We describe a compactified Supermembrane, or M2-brane, with 2-form fluxes generated by constant three-forms that are turned on a 2-torus of the target space $M_9times T^2$. We compare this theory with the one describing a $11D$ M2-brane formulated on $M_9times T^2$ target space subject to an irreducible wrapping condition. We show that the flux generated by the bosonic 3-form under consideration is in a one to one correspondence to the irreducible wrapping condition. After a canonical transformation both Hamiltonians are exactly the same up to a constant shift in one particular case. Consequently both of them, share the same spectral properties. We conclude that the Hamiltonian of the M2-brane with 2-form target space fluxes on a torus has a purely discrete spectrum with eigenvalues of finite multiplicity and it can be considered to describe a new sector of the microscopic degrees of freedom of M-theory. We also show that the total membrane momentum in the direction associated to the flux condition acquires a quantized contribution in correspondence to the flux units that have been turned on.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا