Do you want to publish a course? Click here

A Coronal Holes Effects on CME Shock Morphology in the Inner Heliosphere

115   0   0.0 ( 0 )
 Added by Brian E. Wood
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use STEREO imagery to study the morphology of a shock driven by a fast coronal mass ejection (CME) launched from the Sun on 2011 March 7. The source region of the CME is located just to the east of a coronal hole. The CME ejecta is deflected away from the hole, in contrast with the shock, which readily expands into the fast outflow from the coronal hole. The result is a CME with ejecta not well centered within the shock surrounding it. The shock shape inferred from the imaging is compared with in situ data at 1 AU, where the shock is observed near Earth by the Wind spacecraft, and at STEREO-A. Shock normals computed from the in situ data are consistent with the shock morphology inferred from imaging.



rate research

Read More

Coronal holes (CHs) are regions of open magnetic flux which are the source of high speed solar wind (HSSW) streams. To date, it is not clear which aspects of CHs are of most influence on the properties of the solar wind as it expands through the Heliosphere. Here, we study the relationship between CH properties extracted from AIA (Atmospheric Imaging Assembly) images using CHIMERA (Coronal Hole Identification via Multi-thermal Emission Recognition Algorithm) and HSSW measurements from ACE (Advanced Composition Explorer) at L1. For CH longitudinal widths $Deltatheta_{CH}<$67$^{circ}$, the peak SW velocity ($v_{max}$) is found to scale as $v_{max}~approx~330.8~+~5.7~Deltatheta_{CH}$~km~s$^{-1}$. For larger longitudinal widths ($Deltatheta_{CH}>$67$^{circ}$), $v_{max}$ is found to tend to a constant value ($sim$710~km~s$^{-1}$). Furthermore, we find that the duration of HSSW streams ($Delta t$) are directly related to the longitudinal width of CHs ($Delta t_{SW}$~$approx$~0.09$Deltatheta_{CH}$) and that their longitudinal expansion factor is $f_{SW}~approx 1.2~pm 0.1$. We also derive an expression for the coronal hole flux-tube expansion factor, $f_{FT}$, which varies as $f_{SW} gtrsim f_{FT} gtrsim 0.8$. These results enable us to estimate the peak speeds and durations of HSSW streams at L1 using the properties of CHs identified in the solar corona.
There have been few attempts in the past to understand the collision of individual cases of interacting Coronal Mass Ejections (CMEs). We selected 8 cases of interacting CMEs and estimated their propagation and expansion speeds, direction of impact and masses exploiting coronagraphic and heliospheric imaging observations. Using these estimates with ignoring the errors therein, we find that the nature of collision is perfectly inelastic for 2 cases (e.g., 2012 March and November), inelastic for 2 cases (e.g., 2012 June and 2011 August), elastic for 1 case (e.g., 2013 October) and super-elastic for 3 cases (e.g., 2011 February, 2010 May and 2012 September). Admitting large uncertainties in the estimated directions, angular widths and pre-collision speeds; the probability of perfectly inelastic collision for 2012 March and November cases diverge from 98%-60% and 100%-40%, respectively, reserving some probability for other nature of collision. Similarly, the probability of inelastic collision diverge from 95%-50% for 2012 June case, 85%-50% for 2011 August case, and 75%-15% for 2013 October case. We note that probability of super-elastic collision for 2011 February, 2010 May and 2012 September CMEs diverge from 90%-75%, 60%-45% and 90%-50%, respectively. Although the sample size is small, we find a good dependence of nature of collision on CMEs parameters. The crucial pre-collision parameters of the CMEs responsible for increasing the probability of super-elastic collision, in descending order of priority, are their lower approaching speed, higher expansion speed of the following CME over the preceding one, and longer duration of collision phase.
We analyze magnetic field data from the first six encounters of PSP, three Helios fast streams and two Ulysses south polar passes covering heliocentric distances $0.1lesssim Rlesssim 3$ au. We use this data set to statistically determine the evolution of switchbacks of different periods and amplitudes with distance from the Sun. We compare the radial evolution of magnetic field variances with that of the mean square amplitudes of switchbacks, and quantify the radial evolution of the cumulative counts of switchbacks per km. We find that the amplitudes of switchbacks decrease faster than the overall turbulent fluctuations, in a way consistent with the radial decrease of the mean magnetic field. This could be the result of a saturation of amplitudes and may be a signature of decay processes of large amplitude Alfvenic fluctuations in the solar wind. We find that the evolution of switchback occurrence in the solar wind is scale-dependent: the fraction of longer duration switchbacks increases with radial distance whereas it decreases for shorter switchbacks. This implies that switchback dynamics is a complex process involving both decay and in-situ generation in the inner heliosphere. We confirm that switchbacks can be generated by the expansion although other type of switchbacks generated closer to the sun cannot be ruled out.
We determine the coronal magnetic field strength in the heliocentric distance range 6 to 23 solar radii (Rs) by measuring the shock standoff distance and the radius of curvature of the flux rope during the 2008 March 25 coronal mass ejection (CME) imaged by white-light coronagraphs. Assuming the adiabatic index, we determine the Alfven Mach number, and hence the Alfven speed in the ambient medium using the measured shock speed. By measuring the upstream plasma density using polarization brightness images, we finally get the magnetic field strength upstream of the shock. The estimated magnetic field decreases from ~48 mG around 6 Rs to 8 mG at 23 Rs. The radial profile of the magnetic field can be described by a power law in agreement with other estimates at similar heliocentric distances.
Understanding the physical processes in the solar wind and corona which actively contribute to heating, acceleration, and dissipation is a primary objective of NASAs Parker Solar Probe (PSP) mission. Observations of coherent electromagnetic waves at ion scales suggests that linear cyclotron resonance and non-linear processes are dynamically relevant in the inner heliosphere. A wavelet-based statistical study of coherent waves in the first perihelion encounter of PSP demonstrates the presence of transverse electromagnetic waves at ion resonant scales which are observed in 30-50% of radial field intervals. Average wave amplitudes of approximately 4 nT are measured, while the mean duration of wave events is of order 20 seconds; however long duration wave events can exist without interruption on hour-long timescales. Though ion scale waves are preferentially observed during intervals with a radial mean magnetic field, we show that measurement constraints, associated with single spacecraft sampling of quasi-parallel waves superposed with anisotropic turbulence, render the measured quasi-parallel ion-wave spectrum unobservable when the mean magnetic field is oblique to the solar wind flow; these results imply that the occurrence of coherent ion-scale waves is not limited to a radial field configuration. The lack of strong radial scaling of characteristic wave amplitudes and duration suggests that the waves are generated {em{in-situ}} through plasma instabilities. Additionally, observations of proton distribution functions indicate that temperature anisotropy may drive the observed ion-scale waves.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا