Do you want to publish a course? Click here

Equivariant semi-topological K-homology and a theorem of Thomason

93   0   0.0 ( 0 )
 Added by Jeremiah Heller
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We generalize several comparison results between algebraic, semi-topological and topological K-theories to the equivariant case with respect to a finite group.



rate research

Read More

201 - Paul Baum 2009
Let G be a compact Lie-group, X a compact G-CW-complex. We define equivariant geometric K-homology groups K^G_*(X), using an obvious equivariant version of the (M,E,f)-picture of Baum-Douglas for K-homology. We define explicit natural transformations to and from equivariant K-homology defined via KK-theory (the official equivariant K-homology groups) and show that these are isomorphism.
For G a finite group and X a G-space on which a normal subgroup A acts trivially, we show that the G-equivariant K-theory of X decomposes as a direct sum of twisted equivariant K-theories of X parametrized by the orbits of the conjugation action of G on the irreducible representations of A. The twists are group 2-cocycles which encode the obstruction of lifting an irreducible representation of A to the subgroup of G which fixes the isomorphism class of the irreducible representation.
126 - Bai-Ling Wang 2008
We study twisted $Spin^c$-manifolds over a paracompact Hausdorff space $X$ with a twisting $alpha: X to K(ZZ, 3)$. We introduce the topological index and the analytical index on the bordism group of $alpha$-twisted $Spin^c$-manifolds over $(X, alpha)$, taking values in topological twisted K-homology and analytical twisted K-homology respectively. The main result of this paper is to establish the equality between the topological index and the analytical index. We also define a notion of geometric twisted K-homology, whose cycles are geometric cycles of $(X, a)$ analogous to Baum-Douglass geometric cycles. As an application of our twisted index theorem, we discuss the twisted longitudinal index theorem for a foliated manifold $(X, F)$ with a twisting $alpha: X to K(ZZ, 3)$, which generalizes the Connes-Skandalis index theorem for foliations and the Atiyah-Singer families index theorem to twisted cases.
124 - Marc Hoyois 2016
We construct geometric models for classifying spaces of linear algebraic groups in G-equivariant motivic homotopy theory, where G is a tame group scheme. As a consequence, we show that the equivariant motivic spectrum representing the homotopy K-theory of G-schemes (which we construct as an E-infinity-ring) is stable under arbitrary base change, and we deduce that homotopy K-theory of G-schemes satisfies cdh descent.
We describe a construction of the cyclotomic structure on topological Hochschild homology ($THH$) of a ring spectrum using the Hill-Hopkins-Ravenel multiplicative norm. Our analysis takes place entirely in the category of equivariant orthogonal spectra, avoiding use of the Bokstedt coherence machinery. We are able to defi
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا