No Arabic abstract
We present a new approach to the static finite temperature correlation functions of the Heisenberg chain based on functional equations. An inhomogeneous generalization of the n-site density operator is considered. The lattice path integral formulation with a finite but arbitrary Trotter number allows to derive a set of discrete functional equations with respect to the spectral parameters. We show that these equations yield a unique characterization of the density operator. Our functional equations are a discrete version of the reduced q-Knizhnik-Zamolodchikov equations which played a central role in the study of the zero temperature case. As a natural result, and independent of the arguments given by Jimbo, Miwa, and Smirnov (2009) we prove that the inhomogeneous finite temperature correlation functions have the same remarkable structure as for zero temperature: they are a sum of products of nearest-neighbor correlators.
We present an ab-initio approach for grand canonical ensembles in thermal equilibrium with local or nonlocal external potentials based on the one-reduced density matrix. We show that equilibrium properties of a grand canonical ensemble are determined uniquely by the eq-1RDM and establish a variational principle for the grand potential with respect to its one-reduced density matrix. We further prove the existence of a Kohn-Sham system capable of reproducing the one-reduced density matrix of an interacting system at finite temperature. Utilizing this Kohn-Sham system as an unperturbed system, we deduce a many-body approach to iteratively construct approximations to the correlation contribution of the grand potential.
A previous analysis of scaling, bounds, and inequalities for the non-interacting functionals of thermal density functional theory is extended to the full interacting functionals. The results are obtained from analysis of the related functionals from the equilibrium statistical mechanics of thermodynamics for an inhomogeneous system. Their extension to the functionals of density functional theory is described.
We report on recent results that show that the pair correlation function of systems with exponentially decaying interactions can fail to exhibit Ornstein-Zernike asymptotics at all sufficiently high temperatures and all sufficiently small densities. This turns out to be related to a lack of analyticity of the correlation length as a function of temperature and/or density and even occurs for one-dimensional systems.
Closed form, analytical results for the finite-temperature one-body density matrix, and Wigner function of a $d$-dimensional, harmonically trapped gas of particles obeying exclusion statistics are presented. As an application of our general expressions, we consider the intermediate particle statistics arising from the Gentile statistics, and compare its thermodynamic properties to the Haldane fractional exclusion statistics. At low temperatures, the thermodynamic quantities derived from both distributions are shown to be in excellent agreement. As the temperature is increased, the Gentile distribution continues to provide a good description of the system, with deviations only arising well outside of the degenerate regime. Our results illustrate that the exceedingly simple functional form of the Gentile distribution is an excellent alternative to the generally only implicit form of the Haldane distribution at low temperatures.
The Cholesky factorization of the moment matrix is applied to discrete orthogonal polynomials on the homogeneous lattice. In particular, semiclassical discrete orthogonal polynomials, which are built in terms of a discrete Pearson equation, are studied. The Laguerre-Freud structure semi-infinite matrix that models the shifts by $pm 1$ in the independent variable of the set of orthogonal polynomials is introduced. In the semiclassical case it is proven that this Laguerre-Freud matrix is banded. From the well known fact that moments of the semiclassical weights are logarithmic derivatives of generalized hypergeometric functions, it is shown how the contiguous relations for these hypergeometric functions translate as symmetries for the corresponding moment matrix. It is found that the 3D Nijhoff-Capel discrete Toda lattice describes the corresponding contiguous shifts for the squared norms of the orthogonal polynomials. The continuous Toda for these semiclassical discrete orthogonal polynomials is discussed and the compatibility equations are derived. It also shown that the Kadomtesev-Petvishvilii equation is connected to an adequate deformed semiclassical discrete weight, but in this case the deformation do not satisfy a Pearson equation.