Do you want to publish a course? Click here

Influence of correlated impurities on conductivity of graphene sheets: Time-dependent real-space Kubo approach

122   0   0.0 ( 0 )
 Added by Taras Radchenko
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Exact numerical calculations of the conductivity of graphene sheets with random and correlated distributions of disorders have been performed using the time-dependent real-space Kubo formalism. The disorder was modeled by the long-range Gaussian potential describing screened charged impurities and by the short-range potential describing neutral adatoms both in the weak and strong scattering regime. Our central result is that correlation in the spatial distribution for the strong short-range scatterers and for the long-range Gaussian potential do not lead to any enhancement of the conductivity in comparison to the uncorrelated case. Our results strongly indicate that the temperature enhancement of the conductivity reported in the recent study (Yan and Fuhrer, Phys. Rev. Lett. 107, 206601 (2011)) and attributed to the effect of dopant correlations was most likely caused by other factors not related to the correlations in the scattering potential.



rate research

Read More

Theoretical predictions and recent experimental results suggest one can engineer spin Hall effect in graphene by enhancing the spin-orbit coupling in the vicinity of an impurity. We use a Chebyshev expansion of the Kubo-Bastin formula to compute the spin conductivity tensor for a tight-binding model of graphene with randomly distributed impurities absorbed on top of carbon atoms. We model the impurity-induced spin-orbit coupling with a graphene-only Hamiltonian that takes into account three different contributions~cite{Gmitra2013} and show how the spin Hall and longitudinal conductivities depend on the strength of each spin-orbit coupling and the concentration of impurities. Additionally, we calculate the real-space projection of the density of states in the vicinity of the Dirac point for single and multiple impurities and correlate these results with the conductivity calculations.
A significant advance toward achieving practical applications of graphene as a two-dimensional material in nanoelectronics would be provided by successful synthesis of both n-type and p-type doped graphene. However reliable doping and a thorough understanding of carrier transport in the presence of charged impurities governed by ionized donors or acceptors in the graphene lattice are still lacking. Here we report experimental realization of few-layer nitrogen-doped (N-doped) graphene sheets by chemical vapor deposition of organic molecule 1, 3, 5-triazine on Cu metal catalyst. By reducing the growth temperature, the atomic percentage of nitrogen doping is raised from 2.1 % to 5.6 %. With increasing doping concentration, N-doped graphene sheet exhibits a crossover from p-type to n-type behavior accompanied by a strong enhancement of electron-hole transport asymmetry, manifesting the influence of incorporated nitrogen impurities. In addition, by analyzing the data of X-ray photoelectron spectroscopy, Raman spectroscopy, and electrical measurements, we show that pyridinic and pyrrolic N impurities play an important role in determining the transport behavior of carriers in N-doped graphene sheets.
Charge carrier transport in single-layer graphene with one-dimensional charged defects is studied theoretically. Extended charged defects, considered an important factor for mobility degradation in chemically-vapor-deposited graphene, are described by a self-consistent Thomas-Fermi potential. A numerical study of electronic transport is performed by means of a time-dependent real-space Kubo approach in honeycomb lattices containing millions of carbon atoms, capturing the linear response of realistic size systems in the highly disordered regime. Our numerical calculations are complemented with a kinetic transport theory describing charge transport in the weak scattering limit. The semiclassical transport lifetimes are obtained by computing scattered amplitudes within the second Born approximation. The transport electron-hole asymmetry found in the semiclassical approach is consistent with the Kubo calculations. In the strong scattering regime, the conductivity is found to be a sublinear function of electronic density and weakly dependent on the Thomas-Fermi screening wavelength. We attribute this atypical behavior to the extended nature of one-dimensional charged defects. Our results are consistent with recent experimental reports.
180 - Weiwei Chen , Yedi Shen , Bo Fu 2021
We present a unified understanding for experimentally observed minimal dc conductivity at the Dirac point in weak disordered graphene. First of all, based on the linear response theory, we unravel that randomness or disorder, inevitably inducing momentum dependent corrections in electron self-energy function, naturally yields a sample-dependent minimal conductivity. Taking the long-ranged Gaussian potential as an example, we demonstrate the momentum dependent self-energy function within the Born approximation, and further validate it via numerical simulation using large-scale Lanczos algorithm. The explicit dependence of self-energy on the intensity, concentration and range of potential is critically addressed. Therefore, our results provide a reasonable interpretation of the sample-dependent minimal conductivity observed in graphene samples.
151 - V. Vyurkov , V. Ryzhii 2008
The effect of Coulomb scattering on graphene conductivity in field effect transistor structures is discussed. Inter-particle scattering (electron-electron, hole-hole, and electron-hole) and scattering on charged defects are taken into account in a wide range of gate voltages. It is shown that an intrinsic conductivity of graphene (purely ambipolar system where both electron and hole densities exactly coincide) is defined by strong electron-hole scattering. It has a universal value independent of temperature. We give an explicit derivation based on scaling theory. When there is even a small discrepancy in electron and hole densities caused by applied gate voltage the conductivity is determined by both strong electron-hole scattering and weak external scattering: on defects or phonons. We suggest that a density of charged defects (occupancy of defects) depends on Fermi energy to explain a sub-linear dependence of conductivity on a fairly high gate voltage observed in experiments. We also eliminate contradictions between experimental data obtained in deposited and suspended graphene structures regarding graphene conductivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا