Do you want to publish a course? Click here

The Euler and Navier-Stokes equations on the hyperbolic plane

278   0   0.0 ( 0 )
 Added by Boris Khesin
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that non-uniqueness of the Leray-Hopf solutions of the Navier--Stokes equation on the hyperbolic plane observed in arXiv:1006.2819 is a consequence of the Hodge decomposition. We show that this phenomenon does not occur on the hyperbolic spaces of higher dimension. We also describe the corresponding general Hamiltonian setting of hydrodynamics on complete Riemannian manifolds, which includes the hyperbolic setting.



rate research

Read More

In this paper, we provide rigorous justification of the hydrostatic approximation and the derivation of primitive equations as the small aspect ratio limit of the incompressible three-dimensional Navier-Stokes equations in the anisotropic horizontal viscosity regime. Setting $varepsilon >0$ to be the small aspect ratio of the vertical to the horizontal scales of the domain, we investigate the case when the horizontal and vertical viscosities in the incompressible three-dimensional Navier-Stokes equations are of orders $O(1)$ and $O(varepsilon^alpha)$, respectively, with $alpha>2$, for which the limiting system is the primitive equations with only horizontal viscosity as $varepsilon$ tends to zero. In particular we show that for well prepared initial data the solutions of the scaled incompressible three-dimensional Navier-Stokes equations converge strongly, in any finite interval of time, to the corresponding solutions of the anisotropic primitive equations with only horizontal viscosities, as $varepsilon$ tends to zero, and that the convergence rate is of order $Oleft(varepsilon^fracbeta2right)$, where $beta=min{alpha-2,2}$. Note that this result is different from the case $alpha=2$ studied in [Li, J.; Titi, E.S.: emph{The primitive equations as the small aspect ratio limit of the Navier-Stokes equations: Rigorous justification of the hydrostatic approximation}, J. Math. Pures Appl., textbf{124} rm(2019), 30--58], where the limiting system is the primitive equations with full viscosities and the convergence is globally in time and its rate of order $Oleft(varepsilonright)$.
We prove that the energy equality holds for weak solutions of the 3D Navier-Stokes equations in the functional class $L^3([0,T);V^{5/6})$, where $V^{5/6}$ is the domain of the fractional power of the Stokes operator $A^{5/12}$.
In this paper we give optimal lower bounds for the blow-up rate of the $dot{H}^{s}left(mathbb{T}^3right)$-norm, $frac{1}{2}<s<frac{5}{2}$, of a putative singular solution of the Navier-Stokes equations, and we also present an elementary proof for a lower bound on blow-up rate of the Sobolev norms of possible singular solutions to the Euler equations when $s>frac{5}{2}$.
A hyperbolic relaxation of the classical Navier-Stokes problem in 2D bounded domain with Dirichlet boundary conditions is considered. It is proved that this relaxed problem possesses a global strong solution if the relaxation parameter is small and the appropriate norm of the initial data is not very large. Moreover, the dissipativity of such solutions is established and the singular limit as the relaxation parameter tends to zero is studied
277 - Carlo Morosi 2014
The main result of [C. Morosi and L. Pizzocchero, Nonlinear Analysis, 2012] is presented in a variant, based on a C^infinity formulation of the Cauchy problem; in this approach, the a posteriori analysis of an approximate solution gives a bound on the Sobolev distance of any order between the exact and the approximate solution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا