Quaternion Octonion Reformulation of Grand Unified Theories


Abstract in English

In this paper, Grand Unified theories are discussed in terms of quaternions and octonions by using the relation between quaternion basis elements with Pauli matrices and Octonions with Gell Mann lambda matrices. Connection between the unitary groups of GUTs and the normed division algebra has been established to re-describe the SU(5)gauge group. We have thus described the SU(5)gauge group and its subgroup SU(3)_{C}times SU(2)_{L}times U(1) by using quaternion and octonion basis elements. As such the connection between U(1) gauge group and complex number, SU(2) gauge group and quaternions and SU(3) and octonions is established. It is concluded that the division algebra approach to the the theory of unification of fundamental interactions as the case of GUTs leads to the consequences towards the new understanding of these theories which incorporate the existence of magnetic monopole and dyon.

Download