Do you want to publish a course? Click here

A Spitzer IRAC Measure of the Zodiacal Light

129   0   0.0 ( 0 )
 Added by Jessica Krick
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dominant non-instrumental background source for space-based infrared observatories is the zo- diacal light. We present Spitzer Infrared Array Camera (IRAC) measurements of the zodiacal light at 3.6, 4.5, 5.8, and 8.0 {mu}m, taken as part of the instrument calibrations. We measure the changing surface brightness levels in approximately weekly IRAC observations near the north ecliptic pole (NEP) over the period of roughly 8.5 years. This long time baseline is crucial for measuring the annual sinusoidal variation in the signal levels due to the tilt of the dust disk with respect to the ecliptic, which is the true signal of the zodiacal light. This is compared to both Cosmic Background Explorer Diffuse Infrared Background Experiment (COBE DIRBE) data and a zodiacal light model based thereon. Our data show a few percent discrepancy from the Kelsall et al. (1998) model including a potential warping of the interplanetary dust disk and a previously detected overdensity in the dust cloud directly behind the Earth in its orbit. Accurate knowledge of the zodiacal light is important for both extragalactic and Galactic astronomy including measurements of the cosmic infrared background, absolute measures of extended sources, and comparison to extrasolar interplanetary dust models. IRAC data can be used to further inform and test future zodiacal light models.



rate research

Read More

127 - J. E. Krick , C. Bridge , V. Desai 2011
We present 3.6 and 4.5 micron Spitzer IRAC imaging over 0.77 square degrees at the Virgo cluster core for the purpose of understanding the formation mechanisms of the low surface brightness intracluster light features. Instrumental and astrophysical backgrounds that are hundreds of times higher than the signal were carefully characterized and removed. We examine both intracluster light plumes as well as the outer halo of the giant elliptical M87. For two intracluster light plumes, we use optical colors to constrain their ages to be greater than 3 & 5 Gyr, respectively. Upper limits on the IRAC fluxes constrain the upper limits to the masses, and optical detections constrain the lower limits to the masses. In this first measurement of mass of intracluster light plumes we find masses in the range of 5.5 x 10^8 - 4.5 x 10^9 and 2.1 x 10^8 - 1.5 x 10^9 solar masses for the two plumes for which we have coverage. Given their expected short lifetimes, and a constant production rate for these types of streams, integrated over Virgos lifetime, they can account for the total ICL content of the cluster implying that we do not need to invoke ICL formation mechanisms other than gravitational mechanisms leading to bright plumes. We also examined the outer halo of the giant elliptical M87. The color profile from the inner to outer halo of M87 (160 Kpc) is consistent with either a flat or optically blue gradient, where a blue gradient could be due to younger or lower metallicity stars at larger radii. The similarity of the age predicted by both the infrared and optical colors (> few Gyr) indicates that the optical measurements are not strongly affected by dust extinction.
We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of 115 deg^2 in the Equatorial SDSS Stripe 82 field using Spitzer during its warm mission phase. SpIES was designed to probe sufficient volume to perform measurements of quasar clustering and the luminosity function at z > 3 to test various models for feedback from active galactic nuclei (AGN). Additionally, the wide range of available multi-wavelength, multi-epoch ancillary data enables SpIES to identify both high-redshift (z > 5) quasars as well as obscured quasars missed by optical surveys. SpIES achieves 5{sigma} depths of 6.13 {mu}Jy (21.93 AB magnitude) and 5.75 {mu}Jy (22.0 AB magnitude) at 3.6 and 4.5 microns, respectively - depths significantly fainter than WISE. We show that the SpIES survey recovers a much larger fraction of spectroscopically-confirmed quasars (98%) in Stripe 82 than are recovered by WISE (55%). This depth is especially powerful at high-redshift (z > 3.5), where SpIES recovers 94% of confirmed quasars, whereas WISE only recovers 25%. Here we define the SpIES survey parameters and describe the image processing, source extraction, and catalog production methods used to analyze the SpIES data. In addition to this survey paper, we release 234 images created by the SpIES team and three detection catalogs: a 3.6 {mu}m-only detection catalog containing 6.1 million sources, a 4.5 {mu}m-only detection catalog containing 6.5 million sources, and a dual-band detection catalog containing 5.4 million sources.
We use spitzer-IRAC data to identify near-infrared counterparts to submillimeter galaxies detected with Herschel-SPIRE at 250um in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). Using a likelihood ratio analysis we identify 146 reliable IRAC counterparts to 123 SPIRE sources out of the 159. We find that, compared to the field population, the SPIRE counterparts occupy a distinct region of 3.6 and 4.5um color-magnitude space, and we use this property to identify a further 23 counterparts to 13 SPIRE sources. The IRAC identification rate of 86% is significantly higher than those that have been demonstrated with wide-field ground-based optical and near-IR imaging of Herschel fields. We estimate a false identification rate of 3.6%, corresponding to 4 to 5 sources. Among the 73 counterparts that are undetected in SDSS, 57 have both 3.6 and 4.5um coverage. Of these 43 have [3.6] - [4.5]> 0 indicating that they are likely to be at z > 1.4. Thus, ~ 40% of identified SPIRE galaxies are likely to be high redshift (z > 1.4) sources. We discuss the statistical properties of the IRAC-identified SPIRE galaxy sample including far-IR luminosities, dust temperatures, star-formation rates, and stellar masses. The majority of our detected galaxies have 10^10 to 10^11 L_sun total IR luminosities and are not intense starbursting galaxies as those found at z ~ 2, but they have a factor of 2 to 3 above average specific star-formation rates compared to near-IR selected galaxy samples.
We present a new method employing machine learning techniques for measuring astrophysical features by correcting systematics in IRAC high precision photometry using Random Forests. The main systematic in IRAC light curve data is position changes due to unavoidable telescope motions coupled with an intrapixel response function. We aim to use the large amount of publicly available calibration data for the single pixel used for this type of work (the sweet spot pixel) to make a fast, easy to use, accurate correction to science data. This correction on calibration data has the advantage of using an independent dataset instead of using the science data on itself, which has the disadvantage of including astrophysical variations. After focusing on feature engineering and hyperparameter optimization, we show that a boosted random forest model can reduce the data such that we measure the median of ten archival eclipse observations of XO-3b to be 1459 +- 200 parts per million. This is a comparable depth to the average of those in the literature done by seven different methods, however the spread in measurements is 30-100% larger than those literature values, depending on the reduction method. We also caution others attempting similar methods to check their results with the fiducial dataset of XO-3b as we were also able to find models providing initially great scores on their internal test datasets but whose results significantly underestimated the eclipse depth of that planet.
119 - M. L. N. Ashby 2013
The Spitzer-South Pole Telescope Deep Field (SSDF) is a wide-area survey using Spitzers Infrared Array Camera (IRAC) to cover 94 square degrees of extragalactic sky, making it the largest IRAC survey completed to date outside the Milky Way midplane. The SSDF is centered at 23:30,-55:00, in a region that combines observations spanning a broad wavelength range from numerous facilities. These include millimeter imaging from the South Pole Telescope, far-infrared observations from Herschel/SPIRE, X-ray observations from the XMM XXL survey, near-infrared observations from the VISTA Hemisphere Survey, and radio-wavelength imaging from the Australia Telescope Compact Array, in a panchromatic project designed to address major outstanding questions surrounding galaxy clusters and the baryon budget. Here we describe the Spitzer/IRAC observations of the SSDF, including the survey design, observations, processing, source extraction, and publicly available data products. In particular, we present two band-merged catalogs, one for each of the two warm IRAC selection bands. They contain roughly 5.5 and 3.7 million distinct sources, the vast majority of which are galaxies, down to the SSDF 5-sigma sensitivity limits of 19.0 and 18.2 Vega mag (7.0 and 9.4 microJy) at 3.6 and 4.5 microns, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا