Do you want to publish a course? Click here

High temperature superconductivity from realistic long-range Coulomb and Frohlich interactions

148   0   0.0 ( 0 )
 Added by Gerardo Sica
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the last years ample experimental evidence has shown that charge carriers in high-temperature superconductors are strongly correlated but also coupled with lattice vibrations (phonons), signaling that the true origin of high-Tc superconductivity can only be found in a proper combination of Coulomb and electron-phonon interactions. On this basis, we propose and study a model for high-Tc superconductivity, which accounts for realistic Coulomb repulsion, strong electron-phonon (Frohlich) interaction and residual on-site (Hubbard tilde{U}) correlations without any ad-hoc assumptions on their relative strength and interaction range. In the framework of this model, which exhibits a phase transition to a superconducting state with a critical temperature Tc well in excess of 100K, we emphasize the role of tilde{U} as the driving parameter for a BEC/BCS crossover. Our model lays a microscopic foundation for the polaron-bipolaron theory of superconductivity. We argue that the high-Tc phenomenon originates in competing Coulomb and Frohlich interactions beyond the conventional BCS description.



rate research

Read More

We report analytical and numerical results on the two-particle states of the polaronic t-Jp model derived recently with realistic Coulomb and electron-phonon (Frohlich) interactions in doped polar insulators. Eigenstates and eigenvalues are calculated for two different geometries. Our results show that the ground state is a bipolaronic singlet, made up of two polarons. The bipolaron size increases with increasing ratio of the polaron hopping integral t to the exchange interaction Jp but remains small compared to the system size in the whole range 0<t/Jp<1. Furthermore, the model exhibits a phase transition to a superconducting state with a critical temperature well in excess of 100K. In the range t/Jp<1, there are distinct charge and spin gaps opening in the density of states, specific heat, and magnetic susceptibility well above Tc.
It has been recently shown that the competition between unscreened Coulomb and Fr{o}hlich electron-phonon interactions can be described in terms of a short-range spin exchange $J_p$ and an effective on-site interaction $tilde{U}$ in the framework of the polaronic $t$-$J_p$-$tilde{U}$ model. This model, that provides an explanation for high temperature superconductivity in terms of Bose-Einstein condensation (BEC) of small and light bipolarons, is now studied as a charged Bose-Fermi mixture. Within this approximation, we show that a gap between bipolaron and unpaired polaron bands results in a strong suppression of low-temperature spin susceptibility, specific heat and tunneling conductance, signaling the presence of normal state pseudogap without any assumptions on preexisting orders or broken symmetries in the normal state of the model.
203 - A. S. Alexandrov 2011
Soon after the discovery of the first high temperature superconductor by Georg Bednorz and Alex Mueller in 1986 the late Sir Nevill Mott answering his own question Is there an explanation? [Nature v 327 (1987) 185] expressed a view that the Bose-Einstein condensation (BEC) of small bipolarons, predicted by us in 1981, could be the one. Several authors then contemplated BEC of real space tightly bound pairs, but with a purely electronic mechanism of pairing rather than with the electron-phonon interaction (EPI). However, a number of other researchers criticized the bipolaron (or any real-space pairing) scenario as incompatible with some angle-resolved photoemission spectra (ARPES), with experimentally determined effective masses of carriers and unconventional symmetry of the superconducting order parameter in cuprates. Since then the controversial issue of whether the electron-phonon interaction (EPI) is crucial for high-temperature superconductivity or weak and inessential has been one of the most challenging problems of contemporary condensed matter physics. Here I outline some developments in the bipolaron theory suggesting that the true origin of high-temperature superconductivity is found in a proper combination of strong electron-electron correlations with a significant finite-range (Froehlich) EPI, and that the theory is fully compatible with the key experiments.
Superconductivity in organic conductors is often tuned by the application of chemical or external pressure. With this type of tuning, orbital overlaps and electronic bandwidths are manipulated, whilst the properties of the molecular building blocks remain virtually unperturbed.Here, we show that the excitation of local molecular vibrations in the charge-transfer salt $kappa-(BEDT-TTF)_2Cu[N(CN)_2]Br$ induces a colossal increase in carrier mobility and the opening of a superconducting-like optical gap. Both features track the density of quasi-particles of the equilibrium metal, and can be achieved up to a characteristic coherence temperature $T^* approxeq 50 K$, far higher than the equilibrium transition temperature $T_C = 12.5 K$. Notably, the large optical gap achieved by photo-excitation is not observed in the equilibrium superconductor, pointing to a light induced state that is different from that obtained by cooling. First-principle calculations and model Hamiltonian dynamics predict a transient state with long-range pairing correlations, providing a possible physical scenario for photo-molecular superconductivity.
We present a comparative study of magnetic excitations in the first two Ruddlesden-Popper members of the Hg-family of high-temperature superconducting cuprates, which are chemically nearly identical and have the highest critical temperature ($T_mathrm{c}$) among all cuprate families. Our inelastic photon scattering experiments reveal that the two compounds paramagnon spectra are nearly identical apart from an energy scale factor of $sim130%$ that matches the ratio of $T_mathrm{c}$s, as expected in magnetic Cooper pairing theories. By relating our observations to other cuprates, we infer that the strength of magnetic interactions determines how high $T_mathrm{c}$ can reach. Our finding can be viewed as a magnetic analogue of the isotope effect, thus firmly supporting models of magnetically mediated high-temperature superconductivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا