Do you want to publish a course? Click here

Bose-Einstein condensation for trapped atomic polaritons in a biconical waveguide cavity

196   0   0.0 ( 0 )
 Added by Andrey Leksin
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the problem of high temperature Bose-Einstein condensation (BEC) of atom-light polaritons in a waveguide cavity appearing due to interaction of two-level atoms with (non-resonant) quantized optical radiation, in the strong coupling regime, in the presence of optical collisions (OCs) with buffer gas particles. Specifically, we propose a special biconical waveguide cavity (BWC), permitting localization and trapping of low branch (LB) polaritons imposed by the variation of the waveguide radius in longitudinal direction. We have shown that critical temperature of BEC occurring in the system can be high enough -- few hundred Kelvins; it is connected with photon-like character of LB polaritons and strongly depends on waveguide cavity parameters. In the case of a linear trapping potential we obtain an Airy-shaped polariton condensate wave function which, when disturbed out of equilibrium, exhibits small amplitude oscillations with the characteristic period in the picosecond domain.



rate research

Read More

Reconnections and interactions of filamentary coherent structures play a fundamental role in the dynamics of fluids, plasmas and nematic liquid crystals. In fluids, vortex reconnections redistribute energy and helicity among the length scales and induce fine-scale turbulent mixing. Unlike ordinary fluids where vorticity is a continuous field, in quantum fluids vorticity is concentrated into discrete (quantized) vortex lines turning vortex reconnections into isolated events, making it conceptually easier to study. Here we report experimental and numerical observations of three-dimensional quantum vortex interactions in a cigar-shaped atomic Bose-Einstein Condensate (BEC). In addition to standard reconnections, already numerically and experimentally observed in homogeneous systems away from boundaries, we show that double reconnections, rebounds and ejections can also occur as a consequence of the non-homogeneous, confined nature of the system.
Bose-Einstein condensates (BECs) are macroscopic coherent matter waves that have revolutionized quantum science and atomic physics. They are essential to quantum simulation and sensing, for example underlying atom interferometers in space and ambitious tests of Einsteins equivalence principle. The key to dramatically increasing the bandwidth and precision of such matter-wave sensors lies in sustaining a coherent matter wave indefinitely. Here we demonstrate continuous Bose-Einstein condensation by creating a continuous-wave (CW) condensate of strontium atoms that lasts indefinitely. The coherent matter wave is sustained by amplification through Bose-stimulated gain of atoms from a thermal bath. By steadily replenishing this bath while achieving 1000x higher phase-space densities than previous works, we maintain the conditions for condensation. This advance overcomes a fundamental limitation of all atomic quantum gas experiments to date: the need to execute several cooling stages time-sequentially. Continuous matter-wave amplification will make possible CW atom lasers, atomic counterparts of CW optical lasers that have become ubiquitous in technology and society. The coherence of such atom lasers will no longer be fundamentally limited by the atom number in a BEC and can ultimately reach the standard quantum limit. Our development provides a new, hitherto missing piece of atom optics, enabling the construction of continuous coherent matter-wave devices. From infrasound gravitational wave detectors to optical clocks, the dramatic improvement in coherence, bandwidth and precision now within reach will be decisive in the creation of a new class of quantum sensors.
The decay of multicharged vortices in trapped Bose-Einstein condensates may lead to a disordered vortex state consistent with the Vinen regime of turbulence, characterized by an absence of large-scale flow and an incompressible kinetic energy spectrum $Epropto k^{-1}$. In this work, we study numerically the dynamics of a three-dimensional harmonically trapped Bose-Einstein condensate excited to a Vinen regime of turbulence through the decay of two doubly-charged vortices. First, we study the momentum distribution and observe the emergence of a power-law behavior $n(k)propto k^{-3}$ consistent with the coexistence of wave turbulence. We also study the kinetic energy and particle fluxes, which allows us to identify a direct particle cascade associated with the turbulent stage.
We observe multi-step condensation of sodium atoms with spin $F=1$, where the different Zeeman components $m_F=0,pm 1$ condense sequentially as the temperature decreases. The precise sequence changes drastically depending on the magnetization $m_z$ and on the quadratic Zeeman energy $q$ (QZE) in an applied magnetic field. For large QZE, the overall structure of the phase diagram is the same as for an ideal spin 1 gas, although the precise locations of the phase boundaries are significantly shifted by interactions. For small QZE, antiferromagnetic interactions qualitatively change the phase diagram with respect to the ideal case, leading for instance to condensation in $m_F=pm 1$, a phenomenon that cannot occur for an ideal gas with $q>0$.
We report on the attainment of Bose-Einstein condensation with ultracold strontium atoms. We use the 84Sr isotope, which has a low natural abundance but offers excellent scattering properties for evaporative cooling. Accumulation in a metastable state using a magnetic-trap, narrowline cooling, and straightforward evaporative cooling in an optical trap lead to pure condensates containing 1.5x10^5 atoms. This puts 84Sr in a prime position for future experiments on quantum-degenerate gases involving atomic two-electron systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا