No Arabic abstract
The MESSENGER spacecraft conducted its first flyby of Mercury on 14th January 2008, followed by two subsequent encounters on 6th October 2008 and 29th September 2009, prior to Mercury orbit insertion on 18th March 2011. We have reviewed MESSENGER flight telemetry and X-ray Spectrometer observations from the first two encounters, and correlate several prominent features in the data with the presence of astrophysical X-ray sources in the instrument field of view. We find that two X-ray peaks attributed in earlier work to the detection of suprathermal electrons from the Mercury magnetosphere, are likely to contain a significant number of events that are of astrophysical origin. The intensities of these two peaks cannot be explained entirely on the basis of astrophysical sources, and we support the previous suprathermal explanation but suggest that the electron fluxes derived in those studies be revised to correct for a significant astrophysical signal.
The X-Ray Spectrometer (XRS) on the MESSENGER spacecraft provided measurements of major-element ratios across Mercurys surface. We present global maps of Mg/Si, Al/Si, S/Si, Ca/Si, and Fe/Si derived from XRS data collected throughout MESSENGERs orbital mission. We describe the procedures we used to select and filter data and to combine them to make the final maps, which are archived in NASAs Planetary Data System. Areal coverage is variable for the different element-ratio maps, with 100% coverage for Mg/Si and Al/Si, but only 18% coverage for Fe/Si north of 30 $^{circ}$ N, where the spatial resolution is highest. The spatial resolution is improved over previous maps by 10-15% because of the inclusion of higher-resolution data from late in the mission when the spacecraft periapsis altitude was low. Unlike typical planetary data maps, however, the spatial resolution of the XRS maps can vary from pixel to pixel, and thus care must be taken in interpreting small-scale features. We provide several examples of how the XRS maps can be used to investigate elemental variations in the context of geological features on Mercury, which range in size from single $sim$100-km-diameter craters to large impact basins. We expect that these maps will provide the basis for and/or contribute to studies of Mercurys origin and geological history for many years to come.
The Miniature X-ray Solar Spectrometer (MinXSS) are twin 3U CubeSats. The first of the twin CubeSats (MinXSS-1) launched in December 2015 to the International Space Station for deployment in mid-2016. Both MinXSS CubeSats utilize a commercial off the shelf (COTS) X-ray spectrometer from Amptek to measure the solar irradiance from 0.5 to 30 keV with a nominal 0.15 keV FWHM spectral resolution at 5.9 keV, and a LASP-developed X-ray broadband photometer with similar spectral sensitivity. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. The majority of previous solar soft X-ray measurements have been either at high spectral resolution with a narrow bandpass or spectrally integrating (broadband) photometers. MinXSS will conduct unique soft X-ray measurements with moderate spectral resolution over a relatively large energy range to study solar active region evolution, solar flares, and the effects of solar soft X-ray emission on Earths ionosphere. This paper focuses on the X-ray spectrometer instrument characterization techniques involving radioactive X-ray sources and the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF). Spectrometer spectral response, spectral resolution, response linearity are discussed as well as future solar science objectives.
During the last few years our knowledge about the X-ray emission from bodies within the solar system has significantly improved. Several new solar system objects are now known to shine in X-rays at energies below 2 keV. Apart from the Sun, the known X-ray emitters now include planets (Venus, Earth, Mars, Jupiter, and Saturn), planetary satellites (Moon, Io, Europa, and Ganymede), all active comets, the Io plasma torus (IPT), the rings of Saturn, the coronae (exospheres) of Earth and Mars, and the heliosphere. The advent of higher-resolution X-ray spectroscopy with the Chandra and XMM-Newton X-ray observatories has been of great benefit in advancing the field of planetary X-ray astronomy. Progress in modeling X-ray emission, laboratory studies of X-ray production, and theoretical calculations of cross-sections, have all contributed to our understanding of processes that produce X-rays from the solar system bodies. At Jupiter and Earth, both auroral and non-auroral disk X-ray emissions have been observed. X-rays have been detected from Saturns disk, but no convincing evidence of an X-ray aurora has been observed. The first soft (0.1- 2 keV) X-ray observation of Earths aurora by Chandra shows that it is highly variable. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, those from the disk of Mars, Venus, and Moon, and from the rings of Saturn, are mainly produced by scattering of solar X-rays. The spectral characteristics of X-ray emission from comets, the heliosphere, the geocorona, and the Martian halo are quite similar, but they appear to be quite different from those of Jovian auroral X-rays. X-rays from the Galilean satellites and the IPT are mostly driven by impact of Jovian magnetospheric particles. This paper reviews studies of the soft X-ray emission from the solar system bodies, excluding the Sun.
A recent study suggests that the observed multiplicity of super-Earth (SE) systems is correlated with stellar clustering: stars in high phase-space density environments have an excess of single-planet systems compared to stars in low density fields. This correlation is puzzling as stellar clustering is expected to influence mostly the outer part of planetary systems. Here we examine the possibility that stellar flybys indirectly excite the mutual inclinations of initially coplanar SEs, breaking their co-transiting geometry. We propose that flybys excite the inclinations of exterior substellar companions, which then propagate the perturbation to the inner SEs. Using analytical calculations of the secular coupling between SEs and companions, together with numerical simulations of stellar encounters, we estimate the expected number of effective flybys per planetary system that lead to the destruction of the SE co-transiting geometry. Our analytical results can be rescaled easily for various SE and companion properties (masses and semi-major axes) and stellar cluster parameters (density, velocity dispersion and lifetime). We show that for a given SE system, there exists an optimal companion architecture that leads to the maximum number of effective flybys; this results from the trade-off between the flyby cross section and the companions impact on the inner system. Subject to uncertainties in the cluster parameters, we conclude that this mechanism is inefficient if the SE system has a single exterior companion, but may play an important role in SE + two companions systems that were born in dense stellar clusters.
The Pioneer 10 and 11 and Voyager 1 and 2 spacecraft, launched in the 1970s, are heading out of the solar system. Using the astrometric and radial velocity data from the second Gaia data release, we integrate the trajectories of 7.4 million stars, and the spacecraft, through a Galactic potential in order to identify those stars the spacecraft will pass closest to. The closest encounters for all spacecraft take place at separations between 0.2 and 0.5 pc within the next million years. The closest encounter will be by Pioneer 10 with the K8 dwarf HIP 117795, at 0.23 pc in 90 kyr at a high relative velocity of 291 km/s.