Do you want to publish a course? Click here

Effect of isospin dependent cluster recognition on the observables in heavy ion collisions

98   0   0.0 ( 0 )
 Added by Yingxun Zhang
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We introduce isospin dependence in the cluster recognition algorithms used in the Quantum Molecular Dynamics model to describe fragment formation in heavy ion collisions. This change reduces the yields of emitted nucleons and enhances the yields of fragments, especially heavier fragments. The enhancement of neutron-rich lighter fragments mainly occurs at mid-rapidity. Consequently, isospin dependent observables, such as isotope distributions, yield ratios of $n/p$, $t/^3He$, and isoscaling parameters are affected. We also investigate how equilibration in heavy ion collisions is affected by this change.



rate research

Read More

154 - Li Li , Yingxun Zhang , Zhuxia Li 2017
The validity of impact parameter estimation from the multiplicity of charged particles at low-intermediate energies is checked within the framework of ImQMD model. The simulations show that the multiplicity of charged particles cannot estimate the impact parameter of heavy ion collisions very well, especially for central collisions at the beam energies lower than $sim$70 MeV/u due to the large fluctuations of the multiplicity of charged particles. The simulation results for the central collisions defined by the charged particle multiplicity are compared to those by using impact parameter b=2 fm and it shows that the charge distribution for $^{112}$Sn +$^{112}$Sn at 50 MeV/u is different evidently for two cases; and the chosen isospin sensitive observable, the coalescence invariant single neutron to proton yield ratio, reduces less than 15% for neutron-rich systems $^{124,132}$Sn +$^{124}$Sn at $E_{beam}$=50 MeV/u, while the coalescence invariant double neutron to proton yield ratio does not have obvious difference. The sensitivity of the chosen isospin sensitive observables to effective mass splitting is studied for central collisions defined by the multiplicity of charged particles. Our results show that the sensitivity is enhanced for $^{132}$Sn+$^{124}$Sn relative to that for $^{124}$Sn+$^{124}$Sn, and this reaction system should be measured in future experiments to study the effective mass splitting by heavy ion collisions.
Within the framework of the Lanzhou quantum molecular dynamics (LQMD) transport model, the isospin effect in peripheral heavy-ion collisions has been investigated thoroughly. A coalescence approach is used for recognizing the primary fragments formed in nucleus-nucleus collisions. The secondary decay process of the fragments is described by the statistical code, GEMINI. Production mechanism and isospin effect of the projectile-like and target-like fragments are analyzed with the combined approach. It is found that the isospin migration from the high-isospin density to the low-density matter takes place in the neutron-rich nuclear reactions, i.e., $^{48}$Ca+$^{208}$Pb, $^{86}$Kr+$^{48}$Ca/$^{208}$Pb/$^{124}$Sn, $^{136}$Xe+$^{208}$Pb, $^{124}$Sn+$^{124}$Sn and $^{136}$Xe+$^{136}$Xe. A hard symmetry energy is available for creating the neutron-rich fragments, in particular in the medium-mass region. The isospin effect of the neutron to proton (n/p) ratio of the complex fragments is reduced once including the secondary decay process. However, a soft symmetry energy enhances the n/p ratio of the light particles, in particular at the kinetic energies above 15 MeV/nucleon.
124 - M.Di Toro , M.Colonna , G.Ferini 2007
We show that the phenomenology of isospin effects on heavy ion reactions at intermediate energies (few AGeV range) is extremely rich and can allow a ``direct study of the covariant structure of the isovector interaction in a high density hadron medium. We work within a relativistic transport frame, beyond a cascade picture, consistently derived from effective Lagrangians, where isospin effects are accounted for in the mean field and collision terms. We show that rather sensitive observables are provided by the pion/kaon production (pi^-/pi^+, K^0/K^+ yields). Relevant non-equilibrium effects are stressed. The possibility of the transition to a mixed hadron-quark phase, at high baryon and isospin density, is finally suggested. Some signatures could come from an expected ``neutron trapping effect.
295 - T.X. Liu , W.G. Lynch , M.B. Tsang 2006
Collisions of 112Sn and 124Sn nuclei, which differ in their isospin asymmetry, provide information about the rate of isospin diffusion and equilibration. While several different probes can provide accurate diffusion measurements, the ratios of the mirror nuclei may be the simplest and most promising one. Ratios of the mass seven mirror nuclei yields are analyzed to show the rapidity, transverse momentum and impact parameter dependence of isospin diffusion.
In non-central relativistic heavy ion collisions, the created matter possesses a large initial orbital angular momentum. Particles produced in the collisions could be polarized globally in the direction of the orbital angular momentum due to spin-orbit coupling. Recently, the STAR experiment has presented polarization signals for $Lambda$ hyperons and possible spin alignment signals for $phi$ mesons. Here we discuss the effects of finite coverage on these observables. The results from a multi-phase transport and a toy model both indicate that a pseudorapidity coverage narrower than $|eta|< sim 1$ will generate a larger value for the extracted $phi$-meson $rho_{00}$ parameter; thus a finite coverage can lead to an artificial deviation of $rho_{00}$ from 1/3. We also show that a finite $eta$ and $p_T$ coverage affect the extracted $p_H$ parameter for $Lambda$ hyperons when the real $p_H$ value is non-zero. Therefore proper corrections are necessary to reliably quantify the global polarization with experimental observables.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا