No Arabic abstract
The characteristics of light variation of RSGs in SMC are analyzed based on the nearly 8-10 year long data collected by the ASAS and MACHO projects. The identified 126 RSGs are classified into five categories accordingly: 20 with poor photometry, 55 with no reliable period, 6 with semi-regular variation, 15 with Long Secondary Period (LSP) and distinguishable short period and 30 with only LSP. For the semi-regular variables and the LSP variables with distinguishable short period, the Ks band period-luminosity (P-L) relation is analyzed and compared with that of the Galaxy, LMC and M33. It is found that the RSGs in these galaxies obey similar P-L relation except the Galaxy. In addition, the P-L relations in the infrared bands, namely the 2MASS JHKs, Spitzer/IRAC and Spitzer/MIPS 24 {mu}m bands, are derived with high reliability. The best P-L relation occurs in the Spitzer/IRAC [3.6] and [4.5] bands. Based on the comparison with the theoretical calculation of the P-L relation, the mode of pulsation of RSGs in SMC is suggested to be the first overtone radial mode.
From previous samples of Red Supergiants (RSGs) by various groups, 191 objects are assembled to compose a large sample of RSG candidates in LMC. For 189 of them, the identity as a RSG is verified by their brightness and color indexes in several near- and mid-infrared bands related to the 2MASS JHKs bands and the Spitzer/IRAC and Spitzer/MIPS bands. From the visual time-series photometric observations by the ASAS and MACHO projects which cover nearly 8-10 years, the period and amplitude of light variation are analyzed carefully using both the PDM and Period04 methods. According to the properties of light variation, these objects are classified into five categories: (1) 20 objects are saturated in photometry or located in crowded stellar field with poor photometric results, (2) 35 objects with too complex variation to have any certain period, (3) 23 objects with irregular variation, (4) 16 objects with semi-regular variation, and (5) 95 objects with Long Secondary Period (LSP) among which 31 have distinguishable short period, and 51 have a long period shorter than 3000 days that can be determined with reasonable accuracy. For the semi-regular variables and the LSP variables with distinguishable short period, the period-luminosity relation is analyzed in the visual, near-infrared and mid-infrared bands. It is found that the P-L relation is tight in the infrared bands such as the 2MASS JHKs bands and the Spitzer/IRAC bands, in particular in the Spitzer/IRAC [3.6] and [4.5] bands; meanwhile, the P-L relation is relatively sparse in the V band which may be caused by the inhomogeneous interstellar extinction. The results are compared with others P-L relationships for RSGs and the P-L sequences of red giants in LMC.
The binary fraction of unevolved massive stars is thought to be 70-100% but there are few observational constraints on the binary fraction of the evolved version of a subset of these stars, the red supergiants (RSGs). Here we identify a complete sample of RSGs in the Large Magellanic Cloud (LMC) using new spectroscopic observations and archival UV, IR and broadband optical photometry. We find 4090 RSGs with log L/Lo > 3.5 with 1820 of them having log L/Lo > 4, which we believe is our completeness limit. We additionally spectroscopically confirmed 38 new RSG+B star binaries in the LMC, bringing the total known up to 55. We then estimated the binary fraction using a k-nearest neighbors algorithm that classifies stars as single or binary based on photometry with a spectroscopic sample as a training set. We take into account observational biases such as line-of-sight stars and binaries in eclipse while also calculating model-dependent corrections for RSGs with companions that our observations were not designed to detect. Based on our data, we find an initial result of 13.5 +7.56/-6.67% for RSGs with O or B-type companions. Using the Binary Population and Spectral Synthesis (BPASS) models to correct for unobserved systems, this corresponds to a total RSG binary fraction of 19.5 +7.6/-6.7%. This number is in broad agreement with what we would expect given an initial OB binary distribution of 70%, a predicted merger fraction of 20-30% and a binary interaction fraction of 40-50%.
We combine variability information from the MAssive Compact Halo Objects (MACHO) survey of the Large Magellanic Cloud (LMC) with infrared photometry from the Spitzer Space Telescope Surveying the Agents of a Galaxys Evolution (SAGE) survey to create a dataset of ~30 000 variable red sources. We photometrically classify these sources as being on the first ascent of the Red Giant Branch (RGB), or as being in one of three stages along the Asymptotic Giant Branch (AGB): oxygen-rich, carbon-rich, or highly reddened with indeterminate chemistry (extreme AGB candidates). We present linear period-luminosity relationships for these sources using 8 separate infrared bands (J, H, K, 3.6, 4.5, 5.8, 8.0, and 24 micron) as proxies for the luminosity. We find that the wavelength dependence of the slope of the period-luminosity relationship is different for different photometrically determined classes of AGB stars. Stars photometrically classified as O-rich show the least variation of slope with wavelength, while dust enshrouded extreme AGB stars show a pronounced trend toward steeper slopes with increasing wavelength. We find that O-rich AGB stars pulsating in the fundamental mode obey a period-magnitude relation with a slope of -3.41 +/- 0.04 when magnitude is measured in the 3.6 micron band, in contrast to C-rich AGB stars, which obey a relation of slope -3.77 +/- 0.05.
We recently discovered a yellow supergiant (YSG) in the Small Magellanic Cloud (SMC) with a heliocentric radial velocity of ~300 km/s which is much larger than expected for a star in its location in the SMC. This is the first runaway YSG ever discovered and only the second evolved runaway star discovered in a different galaxy than the Milky Way. We classify the star as G5-8I, and use de-reddened broad-band colors with model atmospheres to determine an effective temperature of 4700+/-250K, consistent with what is expected from its spectral type. The stars luminosity is then L/Lo ~ 4.2+/-0.1, consistent with it being a ~30Myr 9Mo star according to the Geneva evolution models. The star is currently located in the outer portion of the SMCs body, but if the stars transverse peculiar velocity is similar to its peculiar radial velocity, in 10Myr the star would have moved 1.6 degrees across the disk of the SMC, and could easily have been born in one of the SMCs star-forming regions. Based on its large radial velocity, we suggest it originated in a binary system where the primary exploded as a supernovae thus flinging the runaway star out into space. Such stars may provide an important mechanism for the dispersal of heavier elements in galaxies given the large percentage of massive stars that are runaways. In the future we hope to look into additional evolved runaway stars that were discovered as part of our other past surveys.
We present the most extensive and detailed reddening maps of the Magellanic Clouds (MCs) derived from the color properties of Red Clump (RC) stars. The analysis is based on the deep photometric maps from the fourth phase of the Optical Gravitational Lensing Experiment (OGLE-IV), covering approximately 670 deg2 of the sky in the Magellanic System region. The resulting maps provide reddening information for 180 deg2 in the Large Magellanic Cloud (LMC) and 75 deg2 in the Small Magellanic Cloud (SMC), with a resolution of 1.7x1.7 arcmin in the central parts of the MCs, decreasing to approximately 27x27 arcmin in the outskirts. The mean reddening is E(V-I) = 0.100 +- 0.043 mag in the LMC and E(V-I) = 0.047 +- 0.025 mag in the SMC. We refine methods of calculating the RC color to obtain the highest possible accuracy of reddening maps based on RC stars. Using spectroscopy of red giants, we find the metallicity gradient in both MCs, which causes a slight decrease of the intrinsic RC color with distance from the galaxy center of ~0.002 mag/deg in the LMC and between 0.003 and 0.009 mag/deg in the SMC. The central values of the intrinsic RC color are 0.886 and 0.877 mag in the LMC and SMC, respectively. The reddening map of the MCs is available on-line both in the downloadable form and as an interactive interface.