Do you want to publish a course? Click here

The properties of long gamma-ray bursts in massive compact binaries

105   0   0.0 ( 0 )
 Added by Ross Church
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a popular model for long-duration gamma-ray bursts, in which the progenitor star, a stripped helium core, is spun up by tidal interactions with a black- hole companion in a compact binary. We perform population synthesis calculations to produce a representative sample of such binaries, and model the effect that the companion has on material that falls back on to the newly-formed black hole. Taking the results of hydrodynamic models of black-hole formation by fallback as our starting point, we show that the companion has two main effects on the fallback process. First, a break forms in the accretion curve at around 10 000 s. Secondly, subsequent to the break, we expect to see a flare of total energy around 0.1 foe. We predict that the break time is set largely by the semi-major axis of the binary at the time of explosion, and that this correlates negatively with the flare energy. Although comparison with observations is non-trivial, we show that our predicted break times are comparable to those found in the X-ray light curves of canonical long-duration gamma-ray bursts. Similarly, the flare properties that we predict are consistent with the late-time flares observed in a sub-sample of bursts.



rate research

Read More

110 - Rosalba Perna 2010
While there is mounting evidence that long Gamma-Ray Bursts (GRBs) are associated with the collapse of massive stars, the detailed structure of their pre-supernova stage is still debatable. Particularly uncertain is the degree of mixing among shells of different composition, and hence the role of magnetic torques and convection in transporting angular momentum. Here we show that early-time afterglow observations with the Swift satellite place constraints on the allowed GRB pre-supernova models. In particular, they argue against pre-supernova models in which different elemental shells are unmixed. These types of models would produce energy injections into the GRB engine on timescales between several hundreds of seconds to a few hours. Flaring activity has {em not} been observed in a large fraction of well-monitored long GRBs. Therefore, if the progenitors of long GRBs have common properties, then the lack of flares indicates that the massive stars which produce GRBs are mostly well mixed, as expected in low-metallicity, rapidly rotating massive stars.
156 - L. Nava 2010
We compare the spectral properties of 227 Gamma Ray Bursts (GRBs) detected by the Fermi Gamma Ray Burst Monitor (GBM) up to February 2010 with those of bursts detected by the CGRO/BATSE instrument. Out of 227 Fermi GRBs, 166 have a measured peak energy E_peak_obs of their uF( u) spectrum: of these 146 and 20 belong the long and short class, respectively. Fermi long bursts follow the correlations defined by BATSE bursts between their E_peak_obs vs fluence and peak flux: as already shown for the latter ones, these correlations and their slopes do not originate from instrumental selection effects. Fermi/GBM bursts extend such correlations toward lower fluence/peak energy values with respect to BATSE ones whereas no GBM long burst with E_peak_obs exceeding a few MeV is found, despite the possibility of detecting them. Again as for BATSE, $sim$ 5% of long and almost all short GRBs detected by Fermi/GBM are outliers of the E_peak-isotropic equivalent energy (Amati) correlation while no outlier (neither long nor short) of the E_peak-isotropic equivalent luminosity (Yonetoku) correlation is found. Fermi long bursts have similar typical values of E_peak_obs but a harder low energy spectral index with respect to all BATSE events, exacerbating the inconsistency with the limiting slopes of the simplest synchrotron emission models. Although the short GRBs detected by Fermi are still only a few, we confirm that their E_peak_obs is greater and the low energy spectrum is harder than those of long ones. We discuss the robustness of these results with respect to observational biases induced by the differences between the GBM and BATSE instruments.
168 - Emily M. Levesque 2013
Long-duration gamma-ray bursts (LGRBs) are the signatures of extraordinarily high-energy events occurring in our universe. Since their discovery, we have determined that these events are produced during the core-collapse deaths of rare young massive stars. The host galaxies of LGRBs are an excellent means of probing the environments and populations that produce their unusual progenitors. In addition, these same young stellar progenitors makes LGRBs and their host galaxies valuable potentially powerful tracers of star formation and metallicity at high redshifts. However, properly utilizing LGRBs as probes of the early universe requires a thorough understanding of their formation and the host environments that they sample. This review looks back at some of the recent work on LGRB host galaxies that has advanced our understanding of these events and their cosmological applications, and considers the many new questions that we are poised to pursue in the coming years.
The discovery of a number of gamma-ray bursts with duration exceeding 1,000 seconds, in particular the exceptional case of GRB 111209A with a duration of about 25,000 seconds, has opened the question on whether these bursts form a new class of sources, the so called {em ultra-long} GRBs, or if they are rather the tail of the distribution of the standard long GRB duration. In this Letter, using the long GRB sample detected by {em Swift}, we investigate on the statistical properties of ultra-long GRBs and compare them with the overall long burst population. We discuss also on the differences observed in their spectral properties. We find that ultra-long GRBs are statistically different from the standard long GRBs with typical burst duration less than 100-500 seconds, for which a Wolf Rayet star progenitor is usually invoked. We interpret this result as an indication that an alternative scenario has to be found in order to explain the ultra-long GRB extreme energetics, as well as the mass reservoir and its size that can feed the central engine for such a long time.
In this paper we give a brief review of our recent studies on the long and short gamma-ray bursts (GRBs) detected Swift, in an effort to understand the puzzle of classifying GRBs. We consider that it is still an appealing conjecture that both long and short GRBs are drawn from the same parent sample by observational biases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا