Do you want to publish a course? Click here

Visualizing Electrical Breakdown and ON/OFF States in Electrically Switchable Suspended Graphene Break Junctions

466   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Narrow gaps are formed in suspended single to few layer graphene devices using a pulsed electrical breakdown technique. The conductance of the resulting devices can be programmed by the application of voltage pulses, with a voltage of 2.5V~4.5V corresponding to an ON pulse and voltages ~8V corresponding to OFF pulses. Electron microscope imaging of the devices shows that the graphene sheets typically remain suspended and that the device conductance tends to zero when the observed gap is large. The switching rate is strongly temperature dependent, which rules out a purely electromechanical switching mechanism. This observed switching in suspended graphene devices strongly suggests a switching mechanism via atomic movement and/or chemical rearrangement, and underscores the potential of all-carbon devices for integration with graphene electronics.



rate research

Read More

We investigate the electron transport properties of a model magnetic molecule formed by two magnetic centers whose exchange coupling can be altered with a longitudinal electric field. In general we find a negative differential conductance at low temperatures originating from the different scattering amplitudes of the singlet and triplet states. More interestingly, when the molecule is strongly coupled to the leads and the potential drop at the magnetic centers is only weakly dependent on the magnetic configuration, we find that there is a critical voltage V_C at which the current becomes independent of the temperature. This corresponds to a peak in the low temperature current noise. In such limit we demonstrate that the quadratic current fluctuations are proportional to the product between the conductance fluctuations and the temperature.
We present a fabrication process for high quality suspended and double gated trilayer graphene devices. The electrical transport measurements in these transistors reveal a high charge carrier mobility (higher than 20000 cm^2/Vs) and ballistic electric transport on a scale larger than 200nm. We report a particularly large on/off ratio of the current in ABC-stacked trilayers, up to 250 for an average electric displacement of -0.08 V/nm, compatible with an electric field induced energy gap. The high quality of these devices is also demonstrated by the appearance of quantum Hall plateaus at magnetic fields as low as 500mT.
The sticking probability of cold atomic hydrogen on suspended graphene calculated by Lepetit and Jackson [Phys. Rev. Lett. {bf 107}, 236102 (2011)] does not include the effect of fluctuations from low-frequency vibrations of graphene. These fluctuations suppress the sticking probability for low incident energies ($lesssim 15$ meV).
The ability to detect and distinguish quantum interference signatures is important for both fundamental research and for the realization of devices including electron resonators, interferometers and interference-based spin filters. Consistent with the principles of subwavelength optics, the wave nature of electrons can give rise to various types of interference effects, such as Fabry-Perot resonances, Fano resonances and the Aharonov-Bohm effect. Quantum-interference conductance oscillations have indeed been predicted for multiwall carbon nanotube shuttles and telescopes, and arise from atomic-scale displacements between the inner and outer tubes. Previous theoretical work on graphene bilayers indicates that these systems may display similar interference features as a function of the relative position of the two sheets. Experimental verification is, however, still lacking. Graphene nanoconstrictions represent an ideal model system to study quantum transport phenomena due to the electronic coherence and the transverse confinement of the carriers. Here, we demonstrate the fabrication of bowtie-shaped nanoconstrictions with mechanically controlled break junctions (MCBJs) made from a single layer of graphene. We find that their electrical conductance displays pronounced oscillations at room temperature, with amplitudes that modulate over an order of magnitude as a function of sub-nanometer displacements. Surprisingly, the oscillations exhibit a period larger than the graphene lattice constant. Charge-transport calculations show that the periodicity originates from a combination of quantum-interference and lattice-commensuration effects of two graphene layers that slide across each other. Our results provide direct experimental observation of Fabry-Perot-like interference of electron waves that are partially reflected/transmitted at the edges of the graphene bilayer overlap region.
Twisted graphene bilayers provide a versatile platform to engineer metamaterials with novel emergent properties by exploiting the resulting geometric moir{e} superlattice. Such superlattices are known to host bulk valley currents at tiny angles ($alphaapprox 0.3 ^circ$) and flat bands at magic angles ($alpha approx 1^circ$). We show that tuning the twist angle to $alpha^*approx 0.8^circ$ generates flat bands away from charge neutrality with a triangular superlattice periodicity. When doped with $pm 6$ electrons per moire cell, these bands are half-filled and electronic interactions produce a symmetry-broken ground state (Stoner instability) with spin-polarized regions that order ferromagnetically. Application of an interlayer electric field breaks inversion symmetry and introduces valley-dependent dispersion that quenches the magnetic order. With these results, we propose a solid-state platform that realizes electrically tunable strong correlations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا