The Casimir force between graphene sheets is investigated with emphasis on the effect from spatial dispersion using a combination of factors, such as a nonzero chemical potential and an induced energy gap. We distinguish between two regimes for the interaction - T=0 $K$ and $T eq 0$ $K$. It is found that the quantum mechanical interaction (T=0 $K$) retains its distance dependence regardless of the inclusion of dispersion. The spatial dispersion from the finite temperature Casimir force is found to contribute for the most part from $n=0$ Matsubara term. These effects become important as graphene is tailored to become a poor conductor by inducing a band gap.