Asymptotics of the mean-field Heisenberg model


Abstract in English

We consider the mean-field classical Heisenberg model and obtain detailed information about the total spin of the system by studying the model on a complete graph and sending the number of vertices to infinity. In particular, we obtain Cramer- and Sanov-type large deviations principles for the total spin and the empirical spin distribution and demonstrate a second-order phase transition in the Gibbs measures. We also study the asymptotics of the total spin throughout the phase transition using Steins method, proving central limit theorems in the sub- and supercritical phases and a nonnormal limit theorem at the critical temperature.

Download