High resolution spectroscopy of single NV defects coupled with nearby $^{13}$C nuclear spins in diamond


Abstract in English

We report a systematic study of the hyperfine interaction between the electron spin of a single nitrogen-vacancy (NV) defect in diamond and nearby $^{13}$C nuclear spins, by using pulsed electron spin resonance spectroscopy. We isolate a set of discrete values of the hyperfine coupling strength ranging from 14 MHz to 400 kHz and corresponding to $^{13}$C nuclear spins placed at different lattice sites of the diamond matrix. For each lattice site, the hyperfine interaction is further investigated through nuclear spin polarization measurements and by studying the magnetic field dependence of the hyperfine splitting. This work provides informations that are relevant for the development of nuclear-spin based quantum register in diamond.

Download