Do you want to publish a course? Click here

Critical behavior at de-pinning of a driven disordered vortex matter in 2H-NbS2

121   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report unusual jamming in driven ordered vortex flow in 2H-NbS2. Reinitiating movement in these jammed vortices with a higher driving force, and halting it thereafter once again with a reduction in drive, unfolds a critical behavior centered around the de-pinning threshold via divergences in the lifetimes of transient states, validating the predictions of a recent simulation study, which also pointed out a correspondence between plastic de-pinning in vortex matter and the notion of random organization proposed in the context of sheared colloids undergoing diffusive motion.



rate research

Read More

Scanning tunneling microscopy and spectroscopy (STM/S) measurements in the superconducting dichalcogenide 2H-NbS2 show a peculiar superconducting density of states with two well defined features at 0.97 meV and 0.53 meV, located respectively above and below the value for the superconducting gap expected from single band s-wave BCS model (D=1.76kBTc=0.9 meV). Both features have a continuous temperature evolution and disappear at Tc = 5.7 K. Moreover, we observe the hexagonal vortex lattice with radially symmetric vortices and a well developed localized state at the vortex cores. The sixfold star shape characteristic of the vortex lattice of the compound 2H-NbSe2 is, together with the charge density wave order (CDW), absent in 2H-NbS2.
We present measurements of the superconducting critical temperature Tc and upper critical field Hc2 as a function of pressure in the transition metal dichalcogenide 2H-NbS2 up to 20 GPa. We observe that Tc increases smoothly from 6K at ambient pressure to about 8.9K at 20GPa. This range of increase is comparable to the one found previously in 2H-NbSe2. The temperature dependence of the upper critical field Hc2(T) of 2H-NbS2 varies considerably when increasing the pressure. At low pressures, Hc2(0) decreases, and at higher pressures both Tc and Hc2(0) increase simultaneously. This points out that there are pressure induced changes of the Fermi surface, which we analyze in terms of a simplified two band approach.
We examine the current driven dynamics for vortices interacting with conformal crystal pinning arrays and compare to the dynamics of vortices driven over random pinning arrays. We find that the pinning is enhanced in the conformal arrays over a wide range of fields, consistent with previous results from flux gradient-driven simulations. At fields above this range, the effectiveness of the pinning in the moving vortex state can be enhanced in the random arrays compared to the conformal arrays, leading to crossing of the velocity-force curves.
We study effects of pinning on the dynamics of a vortex lattice in a type II superconductor in the strong-pinning situation and determine the force--velocity (or current--voltage) characteristic combining analytical and numerical methods. Our analysis deals with a small density $n_p$ of defects that act with a large force $f_p$ on the vortices, thereby inducing bistable configurations that are a characteristic feature of strong pinning theory. We determine the velocity-dependent average pinning-force density $langle F_p(v)rangle$ and find that it changes on the velocity scale $v_p sim f_p/eta a_0^3$, where $eta$ is the viscosity of vortex motion and $a_0$ the distance between vortices. In the small pin-density limit, this velocity is much larger than the typical flow velocity $v_c sim F_c/eta$ of the free vortex system at drives near the critical force-density $F_c = langle F_p(v=0)rangle propto n_p f_p$. As a result, we find a generic excess-force characteristic, a nearly linear force--velocity characteristic shifted by the critical force-density $F_c$; the linear flux-flow regime is approached only at large drives. Our analysis provides a derivation of Coulombs law of dry friction for the case of strong vortex pinning.
We propose a phenomenological model that accounts for the history effects observed in ac susceptibility measurements in YBa2Cu3O7 single crystals [Phys. Rev. Lett. 84, 4200 (2000) and Phys. Rev. Lett. 86, 504 (2001)]. Central to the model is the assumption that the penetrating ac magnetic field modifies the vortex lattice mobility, trapping different robust dynamical states in different regions of the sample. We discuss in detail on the response of the superconductor to an ac magnetic field when the vortex lattice mobility is not uniform inside the sample. We begin with an analytical description for a simple geometry (slab) and then we perform numerical calculations for a strip in a transverse magnetic field which include relaxation effects. In calculations, the vortex system is assumed to coexist in different pinning regimes. The vortex behavior in the regions where the induced current density j has been always below a given threshold (j_c^>) is described by an elastic Campbell-like regime (or a critical state regime with local high critical current density, j_c^>). When the VS is shaken by symmetrical (e.g. sinusoidal) ac fields, the critical current density is modified to j_c^< (which is smaller than j_c^>) at regions where vortices have been forced to oscillate by a current density larger than j_c^>. Experimentally, an initial state with high critical current density (j_c^>) can be obtained by zero field cooling, field cooling (with no applied ac field) or by shaking the vortex lattice with an asymmetrical (e.g. sawtooth) field. We compare our calculations with experimental ac susceptibility results in YBa2Cu3O7 single crystals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا