Do you want to publish a course? Click here

Measurement and physical interpretation of the mean motion of turbulent density patterns detected by the BES system on MAST

166   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The mean motion of turbulent patterns detected by a two-dimensional (2D) beam emission spectroscopy (BES) diagnostic on the Mega Amp Spherical Tokamak (MAST) is determined using a cross-correlation time delay (CCTD) method. Statistical reliability of the method is studied by means of synthetic data analysis. The experimental measurements on MAST indicate that the apparent mean poloidal motion of the turbulent density patterns in the lab frame arises because the longest correlation direction of the patterns (parallel to the local background magnetic fields) is not parallel to the direction of the fastest mean plasma flows (usually toroidal when strong neutral beam injection is present). The experimental measurements are consistent with the mean motion of plasma being toroidal. The sum of all other contributions (mean poloidal plasma flow, phase velocity of the density patterns in the plasma frame, non-linear effects, etc.) to the apparent mean poloidal velocity of the density patterns is found to be negligible. These results hold in all investigated L-mode, H-mode and internal transport barrier (ITB) discharges. The one exception is a high-poloidal-beta (the ratio of the plasma pressure to the poloidal magnetic field energy density) discharge, where a large magnetic island exists. In this case BES detects very little motion. This effect is currently theoretically unexplained.



rate research

Read More

The Beam Emission Spectroscopy (BES) turbulence diagnostic on MAST is to be upgraded in June 2010 from a 1D trial system to a 2D imaging system (8 radial times 4 poloidal channels) based on a newly developed APD array camera. The spatial resolution of the new system is calculated in terms of the point spread function (PSF) to account for the effects of field-line curvature, observation geometry, the finite lifetime of the excited state of the beam atoms, and beam attenuation and divergence. It is found that the radial spatial resolution is ~ 2-3 cm and the poloidal spatial resolution ~ 1-5 cm depending on the radial viewing location. The absolute number of detected photons is also calculated, hence the photon noise level can be determined
389 - A. Kirk , Yueqiang Liu , R. Martin 2013
The misalignment of field coils in tokamaks can lead to toroidal asymmetries in the magnetic field, which are known as intrinsic error fields. These error fields often lead to the formation of locked modes in the plasma, which limit the lowest density that is achievable. The intrinsic error fields on MAST have been determined by the direct measurement of the toroidal asymmetry of the fields from these coils and have been parameterised in terms of distortions to the coils. The error fields are corrected using error field correction coils, where the optimum correction is found by determining the current required to ensure that the discharge is furthest from the onset of a locked mode. These empirically derived corrections have been compared with the known coil distortions. In the vacuum approximation there is a factor of ~ 3 difference between the predicted and empirically determined correction. When the plasma response is included better agreement is obtained, but there are still some cases where the agreement is not good, which suggests that other effects such as the non-linear coupling of the error field to the plasma are important.
Carbon and nitrogen impurity transport coefficients are determined from gas puff experiments carried out during repeat L-mode discharges on the Mega-Amp Spherical Tokamak (MAST) and compared against a previous analysis of helium impurity transport on MAST. The impurity density profiles are measured on the low-field side of the plasma, therefore this paper focuses on light impurities where the impact of poloidal asymmetries on impurity transport is predicted to be negligible. A weak screening of carbon and nitrogen is found in the plasma core, whereas the helium density profile is peaked over the entire plasma radius.
The high-k ($7 lesssim k_{bot} rho_i lesssim 11$) wavenumber spectrum of density fluctuations has been measured for the first time in MAST [B. Lloyd et al, Nucl. Fusion 43, 1665 (2003)]. This was accomplished with the first implementation of Doppler backscattering (DBS) for core measurements in a spherical tokamak. DBS has become a well-established and versatile diagnostic technique for the measurement of intermediate-k ($k_{bot} rho_i sim 1$, and higher) density fluctuations and flows in magnetically confined fusion experiments. A novel implementation with 2D steering was necessary to enable DBS measurements in MAST, where the large magnetic field pitch angle presents a challenge. We report on the scattering considerations and ray tracing calculations used to optimize the design and present data demonstrating measurement capabilities. Initial results confirm the applicability of the design and implementation approaches, showing the strong dependence of scattering alignment on toroidal launch angle. We also present comparisons of DBS plasma velocity measurements with charge exchange recombination and beam emission spectroscopy measurements, which show reasonable agreement over most of the minor radius, but imply large poloidal flows approaching the magnetic axis in a discharge with an internal transport barrier. The 2D steering is shown to enable high-k measurements with DBS, at $k_{bot}>20 mathrm{cm}^{-1}$ ($k_{bot} rho_i>10$) for launch frequencies less than 75 GHz; this capability is used to measure the wavenumber spectrum of turbulence and we find $|n(k_{bot})|^2 propto k_{bot}^{- 4.7 pm 0.2}$ for $k_{bot} rho_i approx 7-11$, which is similar to the expectation for the turbulent kinetic cascade of $|n(k_{bot})|^2 propto k_{bot}^{- 13/3}$.
217 - A R Field , D Dunai , Y-c Ghim 2013
Observations of ion-scale (k_y*rho_i <= 1) density turbulence of relative amplitude dn_e/n_e <= 0.2% are available on the Mega Amp Spherical Tokamak (MAST) using a 2D (8 radial x 4 poloidal channel) imaging Beam Emission Spectroscopy (BES) diagnostic. Spatial and temporal characteristics of this turbulence, i.e., amplitudes, correlation times, radial and perpendicular correlation lengths and apparent phase velocities of the density contours, are determined by means of correlation analysis. For a low-density, L-mode discharge with strong equilibrium flow shear exhibiting an internal transport barrier (ITB) in the ion channel, the observed turbulence characteristics are compared with synthetic density turbulence data generated from global, non-linear, gyro-kinetic simulations using the particle-in-cell (PIC) code NEMORB. This validation exercise highlights the need to include increasingly sophisticated physics, e.g., kinetic treatment of trapped electrons, equilibrium flow shear and collisions, to reproduce most of the characteristics of the observed turbulence. Even so, significant discrepancies remain: an underprediction by the simulations of the turbulence amplituide and heat flux at plasma periphery and the finding that the correlation times of the numerically simulated turbulence are typically two orders of magnitude longer than those measured in MAST. Comparison of these correlation times with various linear timescales suggests that, while the measured turbulence is strong and may be `critically balanced, the simulated turbulence is weak.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا