Do you want to publish a course? Click here

An extremely primitive halo star

165   0   0.0 ( 0 )
 Added by Piercarlo Bonifacio
 Publication date 2012
  fields Physics
and research's language is English
 Authors E. Caffau




Ask ChatGPT about the research

The early Universe had a chemical composition consisting of hydrogen, helium and traces of lithium1, almost all other elements were created in stars and supernovae. The mass fraction, Z, of elements more massive than helium, is called metallicity. A number of very metal poor stars have been found some of which, while having a low iron abundance, are rich in carbon, nitrogen and oxygen. For theoretical reasons and because of an observed absence of stars with metallicities lower than Z=1.5E-5, it has been suggested that low mass stars (M<0.8Modot, the ones that survive to the present day) cannot form until the interstellar medium has been enriched above a critical value, estimated to lie in the range 1.5E-8leqZleq1.5E-6, although competing theories claiming the contrary do exist. Here we report the chemical composition of a star with a very low Zleq6.9E-7 (4.5E-5 of that of the Sun) and a chemical pattern typical of classical extremely metal poor stars, meaning without the enrichment of carbon, nitrogen and oxygen. This shows that low mass stars can be formed at very low metallicity. Lithium is not detected, suggesting a low metallicity extension of the previously observed trend in lithium depletion. Lithium depletion implies that the stellar material must have experienced temperatures above two million K in its history, which points to rather particular formation condition or internal mixing process, for low Z stars.



rate research

Read More

140 - Monique Spite 2015
The lithium abundance in turnoff stars of the old population of our Galaxy is remarkably constant in the metallicity interval -2.8textless{}[Fe/H] textless{}-2.0, defining a plateau. The Li abundance of these turnoff stars is clearly lower than the abundance predicted by the primordial nucleosynthesis in the frame of the standard Big Bang nucleosynthesis. Different scenarios have been proposed for explaining this discrepancy, along with the very low scatter of the lithium abundance around the plateau. The recently identified very high velocity star, WISE J072543.88-235119.7 appears to belong to the old Galactic population, and appears to be an extreme halo star on a bound, retrograde Galactic orbit. In this paper, we study the abundance ratios and, in particular the lithium abundance, in this star. The available spectra (ESO-Very Large Telescope) are analyzed and the abundances of Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Sr and Ba are determined.The abundance ratios in WISE J072543.88-235119.7 are those typical of old turnoff stars. The lithium abundance in this star ~is in close agreement with the lithium abundance found in the metal-poor turnoff stars located at moderate distance from the Sun. This high velocity star confirms, in an extreme case, that the very small scatter of the lithium plateau persists independent of the dynamic and kinematic properties of the stars.
150 - Ross Fadely 2011
We investigate the kinematic and photometric properties of the Segue 3 Milky Way companion using Keck/DEIMOS spectroscopy and Magellan/IMACS g and r-band imaging. Using maximum likelihood methods to analyze the photometry, we study the structure and stellar population of Segue 3. We find the half-light radius of Segue 3 is 26 +/- 5 (2.1 +/- 0.4 pc, for a distance of 17 kpc) and the absolute magnitude is a mere M_V = 0.0 +/- 0.8 mag, making Segue 3 the least luminous old stellar system known. We find Segue 3 to be consistent with a single stellar population, with an age of 12.0 +1.5/-0.4 Gyr and an [Fe/H] of -1.7 +0.07/-0.27. Line-of-sight velocities from the spectra are combined with the photometry to determine a sample of 32 stars which are likely associated with Segue 3. The member stars within three half-light radii have a velocity dispersion of 1.2 +/- 2.6 km/s. Photometry of the members indicates the stellar population has a spread in [Fe/H] of <0.3 dex. These facts, together with the small physical size of Segue 3, imply the object is likely an old, faint stellar cluster which contains no significant dark matter. We find tentative evidence for stellar mass loss in Segue 3 through the eleven candidate member stars outside of three half-light radii, as expected from dynamical arguments. Interpretation of the data outside of three half-light radii, is complicated by the objects spatial coincidence with a previously known halo substructure, which may enhance contamination of our member sample.
The relative importance of metals and dust grains in the formation of the first low-mass stars has been a subject of debate. The recently discovered Galactic halo star SDSS J102915+172927 (Caffau et al. 2011) has a mass less than 0.8 Msun and a metallicity of Z = 4.5 10^{-5} Zsun. We investigate the origin and properties of this star by reconstructing the physical conditions in its birth cloud. We show that the observed elemental abundance trend of SDSS J102915+172927 can be well fitted by the yields of core-collapse supernovae with metal-free progenitors of 20 Msun and 35 Msun. Using these selected supernova explosion models, we compute the corresponding dust yields and the resulting dust depletion factor taking into account the partial destruction by the supernova reverse shock. We then follow the collapse and fragmentation of a star forming cloud enriched by the products of these SN explosions at the observed metallicity of SDSS J102915+172927. We find that [0.05 - 0.1] Msun mass fragments, which then lead to the formation of low-mass stars, can occur provided that the mass fraction of dust grains in the birth cloud exceeds 0.01 of the total mass of metals and dust. This, in turn, requires that at least 0.4 Msun of dust condense in the first supernovae, allowing for moderate destruction by the reverse shock. If dust formation in the first supernovae is less efficient or strong dust destruction does occur, the thermal evolution of the SDSS J102915+172927 birth cloud is dominated by molecular cooling, and only > 8 Msun fragments can form. We conclude that the observed properties of SDSS J102915+172927 support the suggestion that dust must have condensed in the ejecta of the first supernovae and played a fundamental role in the formation of the first low-mass stars.
75 - S. S. Larsen 2020
Globular clusters (GCs) are dense, gravitationally bound systems of thousands to millions of stars. They are preferentially associated with the oldest components of galaxies, and measurements of their composition can therefore provide insight into the build-up of the chemical elements in galaxies in the early Universe. We report a massive GC in the Andromeda Galaxy (M31) that is extremely depleted in heavy elements. Its iron abundance is about 800 times lower than that of the Sun, and about three times lower than in the most iron-poor GCs previously known. It is also strongly depleted in magnesium. These measurements challenge the notion of a metallicity floor for GCs and theoretical expectations that massive GCs could not have formed at such low metallicities.
The interaction of a supernova with a circumstellar medium (CSM) can dramatically increase the emitted luminosity by converting kinetic energy to thermal energy. In superluminous supernovae (SLSNe) of Type IIn -- named for narrow hydrogen lines in their spectra -- the integrated emission can reach $sim 10^{51}$ erg, attainable by thermalising most of the kinetic energy of a conventional SN. A few transients in the centres of active galaxies have shown similar spectra and even larger energies, but are difficult to distinguish from accretion onto the supermassive black hole. Here we present a new event, SN2016aps, offset from the centre of a low-mass galaxy, that radiated $gtrsim 5 times 10^{51}$ erg, necessitating a hyper-energetic supernova explosion. We find a total (SN ejecta $+$ CSM) mass likely exceeding 50-100 M$_odot$, with energy $gtrsim 10^{52}$ erg, consistent with some models of pair-instability supernovae (PISNe) or pulsational PISNe -- theoretically-predicted thermonuclear explosions from helium cores $>50$ M$_odot$. Independent of the explosion mechanism, this event demonstrates the existence of extremely energetic stellar explosions, detectable at very high redshifts, and provides insight into dense CSM formation in the most massive stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا