Do you want to publish a course? Click here

Radio-Continuum study of the Nearby Sculptor Group Galaxies. Part 1: NGC 300 at lambda = 20 cm

154   0   0.0 ( 0 )
 Added by Evan Crawford
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

A series of new radio-continuum (lambda=20 cm) mosaic images focused on the NGC 300 galactic system were produced using archived observational data from the VLA and/or ATCA. These new images are both very sensitive (rms=60 microJy) and feature high angular resolution (<10). The most prominent new feature is the galaxys extended radio-continuum emission, which does not match its optical appearance. Using these newly created images a number of previously unidentified discrete sources have been discovered. Furthermore, we demonstrate that a joint deconvolution approach to imaging this complete data-set is inferior when compared to an immerge approach.



rate research

Read More

A series of new radio-continuum ({lambda}=20, 13, 6 and 3 cm) mosaic images focused on the NGC55 galactic system were produced using archived observational data from the Australia Telescope Compact Array. These new images are both very sensitive (down to rms=33 {mu}Jy) and feature high angular resolution (down to <4). Using these newly created images, 66 previously unidentified discrete sources are identified. Of these sources, 46 were classified as background sources, 11 as HII regions and 6 as supernova remnant candidates. This relatively low number of SNR candidates detected coupled with the low number of large HII regions is consistent with the estimated low star formation rate of the galaxy at 0.06 solar masses per year. Our spectral index map shows that the core of galaxy appears to have a shallow spectral index between {alpha} = -0.2 and -0.4. This indicates that the core of the galaxy is a region of high thermal radiation output.
We re-examine a series of archived centimetre radio-continuum observations (lambda=16, 6 and 3 cm) focusing on NGC7793 using the Australia Telescope Compact Array. These new images are both very sensitive (rms=0.011 mJy/beam) and feature reasonably high angular resolution (down to < 3). Using these images, a total of 76 discrete radio sources are identified, of which 57 have been classified. We also studied the radio component of the micro-quasar NGC7793-S26 which shows two distinct regions of somewhat steep spectral index between -0.3 and -0.7.
We present and discuss a new catalogue of 52 compact HII regions in the Small Magellanic Cloud (SMC) and a newly created deep 1420 MHz (lambda=20 cm) radio-continuum image of the N19 region located in the southwestern part of the SMC. The new images were created by merging 1420 MHz radio-continuum archival data from the Australian Telescope Compact Array. The majority of these detected radio compact HII regions have rather flat spectral indices which indicates, as expected, that the dominant emission mechanism is of thermal nature.
We present a series of new high-sensitivity and high-resolution radio-continuum images of M31 at lambda=20 cm ( u=1.4 GHz). These new images were produced by merging archived 20 cm radio-continuum observations from the Very Large Array (VLA) telescope. Images presented here are sensitive to rms=60 mu Jy and feature high angular resolution (<10). A complete sample of discrete radio sources have been catalogued and analysed across 17 individual VLA projects. We identified a total of 864 unique discrete radio sources across the field of M31. One of the most prominent regions in M31 is the ring feature for which we estimated total integrated flux of 706 mJy at lambda=20 cm. We compare here, detected sources to those listed in Gelfand et al. (2004) at lambda=92 cm and find 118 sources in common to both surveys. The majority (61%) of these sources exhibit a spectral index of alpha <-0.6 indicating that their emission is predominantly non-thermal in nature. That is more typical for background objects.
(Abridged) We conducted a Chandra ACIS observation of the nearby Sculptor Group Sd galaxy NGC 7793. At the assumed distance to NGC 7793 of 3.91 Mpc, the limiting unabsorbed luminosity of the detected discrete X-ray sources (0.2-10.0 keV) is approximately 3x10^36 ergs s^-1. A total of 22 discrete sources were detected at the 3-sigma level or greater including one ultra-luminous X-ray source (ULX). Based on multiwavelength comparisons, we identify X-ray sources coincident with one SNR, the candidate microquasar N7793-S26, one HII region and two foreground Galactic stars. We also find that the X-ray counterpart to the candidate radio SNR R3 is time-variable in its X-ray emission: we therefore rule out the possibility that this source is a single SNR. A marked asymmetry is seen in the distribution of the discrete sources with the majority lying in the eastern half of this galaxy. All of the sources were analyzed using quantiles to estimate spectral properties and spectra of the four brightest sources (including the ULX) were extracted and analyzed. We searched for time-variability in the X-ray emission of the detected discrete sources using our measured fluxes along with fluxes measured from prior Einstein and ROSAT observations. From this study, three discrete X-ray sources are established to be significantly variable. A spectral analysis of the galaxys diffuse emission is characterized by a temperature of kT = 0.19-0.25 keV. The luminosity function of the discrete sources shows a slope with an absolute value of Gamma = -0.65+/-0.11 if we exclude the ULX. If the ULX is included, the luminosity function has a long tail to high L_X with a poor-fitting slope of Gamma = -0.62+/-0.2. The ULX-less slope is comparable to the slopes measured for the distributions of NGC 6946 and NGC 2403 but much shallower than the slopes measured for the distributions of IC 5332 and M83.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا