No Arabic abstract
The many-body system comprising a He nucleus, three electrons, and a positron has been studied using the exact diagonalization technique. The purpose has been to clarify to which extent the system can be considered as a distinguishable positronium (Ps) atom interacting with a He atom and, thereby, to pave the way to a practical atomistic modeling of Ps states and annihilation in matter. The maximum value of the distance between the positron and the nucleus is constrained and the Ps atom at different distances from the nucleus is identified from the electron and positron densities, as well as from the electron-positron distance and center-of-mass distributions. The polarization of the Ps atom increases as its distance from the nucleus decreases. A depletion of the He electron density, particularly large at low density values, has been observed. The ortho-Ps pick-off annihilation rate calculated as the overlap of the positron and the free He electron densities has to be corrected for the observed depletion, specially at large pores/voids.
We investigate the modeling of positronium (Ps) states and their pick-off annihilation trapped at open volumes pockets in condensed molecular matter. Our starting point is the interacting many-body system of Ps and a He atom because it is the smallest entity that can mimic the energy gap between the highest occupied and lowest unoccupied molecular orbitals of molecules and yet the the many-body structure of the HePs system can be calculated accurately enough. The exact-diagonalization solution of the HePs system enables us to construct a pair-wise full-correlation single-particle potential for the Ps-He interaction and the total potential in solids is obtained as a superposition of the pair-wise potentials. We study in detail Ps states and their pick-off annihilation rates in voids inside solid He and analyse experimental results for Ps-induced voids in liquid He obtaining the radii of the voids. More importantly, we generalize our conclusions by testing the validity of the Tao-Eldrup model, widely used to analyse ortho-Ps annihilation measurements for voids in molecular matter, against our theoretical results for the solid He. Moreover, we discuss the influence of the partial charges of polar molecules and the strength of the van der Waals interaction on the pick-off annihilation rate.
In this work we define single-particle potentials for a positron and a positronium atom interacting with light atoms (H, He, Li and Be) by inverting a single-particle Schrodinger equation. For this purpose, we use accurate energies and positron densities obtained from the many-body wavefunction of the corresponding positronic systems. The introduced potentials describe the exact correlations for the calculated systems including the formation of a positronium atom. We show that the scattering lengths and the low-energy s-wave phase shifts from accurate many-body calculations are well accounted for by the introduced potential. We also calculate self-consistent two-component density-functional theory positron potentials and densities for the bound positronic systems within the local density approximation. They are in a very good agreement with the many-body results, provided that the finite-positron-density electron-positron correlation potential is used, and they can also describe systems comprising a positronium atom. We argue that the introduced single-particle positron potentials defined for single molecules are transferable to the condensed phase when the inter-molecular interactions are weak. When this condition is fulfilled, the total positron potential can be constructed in a good approximation as the superposition of the molecular potentials.
Geometry, electronic structure, and magnetic properties of methylthiolate-stabilized Au$_{25}$L$_{18}$ and MnAu$_{24}$L$_{18}$ (L = SCH$_3$) clusters adsorbed on noble-metal (111) surfaces have been investigated by using spin-polarized density functional theory computations. The interaction between the cluster and the surface is found to be mediated by charge transfer mainly from or into the ligand monolayer. The electronic properties of the 13-atom metal core remain in all cases rather undisturbed as compared to the isolated clusters in gas phase. The Au$_{25}$L$_{18}$ cluster retains a clear HOMO - LUMO energy gap in the range of 0.7 eV to 1.0 eV depending on the surface. The ligand layer is able to decouple the electronic structure of the magnetic MnAu$_{24}$L$_{18}$ cluster from Au(111) surface, retaning a high local spin moment of close to 5 $mu_{B}$ arising from the spin-polarized Mn(3d) electrons. These computations imply that the thiolate monolayer-protected gold clusters may be used as promising building blocks with tunable energy gaps, tunneling barriers, and magnetic moments for applications in the area of electron and/or spin transport.
Hexagonal boron nitride (hBN) is a natural hyperbolic material which can also accommodate highly dispersive surface phonon-polariton modes. In this paper, we examine theoretically the mid-infrared optical properties of graphene-hBN heterostructures derived from their coupled plasmon-phonon modes. We found that the graphene plasmon couples differently with the phonons of the two Reststrahlen bands, owing to their different hyperbolicity. This also leads to distinctively different interaction between an external quantum emitter and the plasmon-phonon modes in the two bands, leading to substantial modification of its spectrum. The coupling to graphene plasmons allows for additional gate tunability in the Purcell factor, and narrow dips in its emission spectra.
The tunable magnetism at graphene edges with lengths of up to 48 unit cells is analyzed by an exact diagonalization technique. For this we use a generalized interacting one-dimensional model which can be tuned continuously from a limit describing graphene zigzag edge states with a ferromagnetic phase, to a limit equivalent to a Hubbard chain, which does not allow ferromagnetism. This analysis sheds light onto the question why the edge states have a ferromagnetic ground state, while a usual one-dimensional metal does not. Essentially we find that there are two important features of edge states: (a) umklapp processes are completely forbidden for edge states; this allows a spin-polarized ground state. (b) the strong momentum dependence of the effective interaction vertex for edge states gives rise to a regime of partial spin-polarization and a second order phase transition between a standard paramagnetic Luttinger liquid and ferromagnetic Luttinger liquid.