The dual space of the C*-algebra of bounded uniformly continuous functions on a uniform space carries several natural topologies. One of these is the topology of uniform convergence on bounded uniformly equicontinuous sets, or the UEB topology for short. In the particular case of a topological group and its right uniformity, the UEB topology plays a significant role in the continuity of convolution. In this paper we derive a useful characterisation of bounded uniformly equicontinuous sets on locally compact groups. Then we demonstrate that for every locally compact group G the UEB topology on the space of finite Radon measures on G coincides with the right multiplier topology. In this sense the UEB topology is a generalisation to arbitrary topological groups of the multiplier topology for locally compact groups. In the final section we prove results about UEB continuity of convolution.
Let $X$ be an infinite dimensional uniformly smooth Banach space. We prove that $X$ contains an infinite equilateral set. That is, there exists a constant $lambda>0$ and an infinite sequence $(x_i)_{i=1}^inftysubset X$ such that $|x_i-x_j|=lambda$ for all $i eq j$.
Multipliers of reproducing kernel Hilbert spaces can be characterized in terms of positivity of $n times n$ matrices analogous to the classical Pick matrix. We study for which reproducing kernel Hilbert spaces it suffices to consider matrices of bounded size $n$. We connect this problem to the notion of subhomogeneity of non-selfadjoint operator algebras. Our main results show that multiplier algebras of many Hilbert spaces of analytic functions, such as the Dirichlet space and the Drury-Arveson space, are not subhomogeneous, and hence one has to test Pick matrices of arbitrarily large matrix size $n$. To treat the Drury-Arveson space, we show that multiplier algebras of certain weighted Dirichlet spaces on the disc embed completely isometrically into the multiplier algebra of the Drury-Arveson space.
Subsets of the set of $g$-tuples of matrices that are closed with respect to direct sums and compact in the free topology are characterized. They are, in a dilation theoretic sense, contained in the hull of a single point.
We present and apply a theory of one parameter $C_0$-semigroups of linear operators in locally convex spaces. Replacing the notion of equicontinuity considered by the literature with the weaker notion of sequential equicontinuity, we prove the basic results of the classical theory of $C_0$-equicontinuous semigroups: we show that the semigroup is uniquely identified by its generator and we provide a generation theorem in the spirit of the celebrated Hille-Yosida theorem. Then, we particularize the theory in some functional spaces and identify two locally convex topologies that allow to gather under a unified framework various notions $C_0$-semigroup introduced by some authors to deal with Markov transition semigroup. Finally, we apply the results to transition semigroups.
In this paper, we introduce the concept of uniformly bounded fibred coarse embeddability of metric spaces, generalizing the notion of fibred coarse embeddability defined by X. Chen, Q. Wang and G. Yu. Moreover, we show its relationship with uniformly bounded a-T-menability of groups. Finally, we give some examples to illustrate the differences between uniformly bounded fibred coarse embeddability and fibred coarse embeddability.